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Background and Motivation

« Improved diagnostics for PV failures are critical for ensuring reliability
« |V traces are a common technique used to evaluate string or module performance

« |V traces have been classified by feature extraction (l..,V,..FF, Rsy, R, €tc.), but
some failure characteristics may be missed. For example,
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Plots courtesy of Josh Stein, Sandia National Labs

» Principal component analysis improves feature variance, and has shown
success in |V classification [1]
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Physical implementation of failure modes

* Located at Florida Solar Energy Center (FSEC) in Cocoa, Florida
e A control string and a test string are implemented with 12 modules each
* The test string has three modes: unstressed, partial soiling, and cell cracking

Partial Soiling Cell Cracking

+ Semi-transparent polymer film was laid * Modules underwent a sequence of
on top of the bottom six modules [2] increasingly damaging thermomechanical
loads [3,4]
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Methodology: First looks at the data

Percent difference in average daily power
per mode

Average |V curve per mode
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Average IV curve profiles for control Max power point tracking (MPPT)
string (CS), and three modes in the data shows large power loss in partial
faulted string (FS) shows identifiable soiling failure but relatively small,
trends in each failure mode. A sometimes undetectable, loss in cell
standard deviation region is included cracking failure

on all samples.

&

UCF



Methodology: Data filtering and processing

Raw data Processed data
p— Filtering » Preprocessing > Normalizing » Flattening I
Temperature, IV curve power
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Methodology: Data flattening

Raw data Processed data
— Filtering » Preprocessing > Normalizing » Flattening T —
Temperature, IV curve power
Flattening
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Brief overview of ML technigues

Principal Component Analysis (PCA)
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Principal components are evaluated as linear combinations of
the input variables, constituting new axis in the input feature
space. Figure from [5]

Flattened data
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Random Forest (RF) is an ensemble of
decision trees. Figure from [6]




Methodoloqgy: Feature reduction and classification

Processed data
Current, voltage,
power
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Two approaches are studied:

1. With PCA: Conduct PCA on input features, push principal
components into machine learning model
2. Without PCA: Push input features into machine learning model




Results: Model accuracy can be evaluated at two levels

Points-level confusion matrix Trace-level confusion matrix
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classification. IV trace. The classification which occurs the most

is designated as the trace-level classification.
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Results: Accuracy evaluations

Studying the model accuracy over 20 repetition to quantify variance across iterations

Average accuracy, % (SD)

Point-level Trace-level
With PCA 78.8 (1.22) 08.8 (1.28)
Without PCA  79.3 (1.80) 98.0 (1.63)

Studying the distribution of accuracy along a trace in one test

With PCA Without PCA
100 - —— - 10 100 - - 10
T T -

20 ‘ -08 80 - | -08
> \ | ne % > \ =
§ ‘ O.GE § ‘ OGE
o = o =
2o g w- ] |

| 04 (it ‘ 04
=02 ‘ ‘ =02
I A AR e |
0= 1 i i i i i i i i
0.0 02 04 0.6 0.8 1.0 0.0 02 04 06 08 1.0
V /I max(V) V/ max(V)

1. Higher accuracies located where failure modes visually differentiate
2. Similar accuracy profiles are seen on both With/Without PCA




Results: PCA has minimal effect on the feature space
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Conclusion

* In our case, PCA gives only marginal improvement in
accuracy (+0.8%, on average)

« High accuracies (>98%) are found even though we
incorporate failure modes which minorly affect the IV curve

* Preprocessing steps are essential towards differentiating
our failure modes

* Model deployment is running successfully with similar
accuracies




Future work: IV pattern recognition with neural networks

Multi-headed LSTM Architecture 1D CNN Architecture
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\ / / output: | (None, 72, 256)

concatenate_1: Concatenate mput: | (None, 72, 256)
- dropout_5: Dropout p—

output: | (None, 56)
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dense_1: Dense mput: | (None, 72, 256)
max_poolingld_5: MaxPoolingl D

oufput: | (None, 36, 256)
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dense_2: Dense

mput: | (None, 36, 256)

flatten_5: Flatten

output: (None, 9216)

mput: | (None, 9216)
output: | (None, 100)

Why neural networks? dese 9 Dense

* Could scale well with more failure modes which
have less variability dense_10: Dense || T 100

output: | (None, 3)
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APPENDIX
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IFeature  Importance
Current (.538

With PCA p U 0.499 Without PCA  Power 0.320
PC2 0.501 Voltage 0.142
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