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Background and Motivation 
• Improved diagnostics for PV failures are critical for ensuring reliability

• IV traces are a common technique used to evaluate string or module performance
• IV traces have been classified by feature extraction (Isc,Voc,FF, RSH, Rs, etc.), but

some failure characteristics may be missed. For example,
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• Principal component analysis improves feature variance, and has shown
success in IV classification [1]
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Physical implementation of failure modes 
• Located at Florida Solar Energy Center (FSEC) in Cocoa, Florida

• A control string and a test string are implemented with 12 modules each

• The test string has three modes: unstressed, partial soiling, and cell cracking

Partial Soiling
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• Semi-transparent polymer film was laid
on top of the bottom six modules [2]

Cell Cracking
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• Modules underwent a sequence of
increasingly damaging thermomechanical
loads [3,4]
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Methodology: First looks at the data 
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Average IV curve profiles for control
string (CS), and three modes in the
faulted string (FS) shows identifiable
trends in each failure mode. A
standard deviation region is included
on all samples.
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Max power point tracking (MPPT)
data shows large power loss in partial
soiling failure but relatively small,
sometimes undetectable, loss in cell
cracking failure



Methodology: Data filtering and processing 
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Methodology: Data flattening 
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Brief overview of ML techniques 

Principal Component Analysis (PCA) 
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Principal components are evaluated as linear combinations of

the input variables, constituting new axis in the input feature

space. Figure from [5]
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Methodology: Feature reduction and classification 
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Two approaches are studied:
1. With PCA: Conduct PCA on input features, push principal

components into machine learning model

2. Without PCA: Push input features into machine learning model
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Results: Model accuracy can be evaluated at two levels 
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Results: Accuracy evaluations 
Studying the model accuracy over 20 repetition to quantify variance across iterations

Avcragc accuracy, % (SD)

Point-level Trace-level

With PCA 78.8(1.22) 98.8 (1.28)
Without PCA 79.3(1.80) 98.0 (1.63)

Studying the distribution of accuracy along a trace in one test
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Results: PCA has minimal effect on the feature space 
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Conclusion 

• In our case, PCA gives only marginal improvement in
accuracy (+0.8%, on average)

• High accuracies (>98%) are found even though we
incorporate failure modes which minorly affect the IV curve

• Preprocessing steps are essential towards differentiating
our failure modes

• Model deployment is running successfully with similar
accuracies



Future work: IV pattern recoqnition with neural networks 

Multi-headed LSTM Architecture 1D CNN Architecture
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o utp t: (None. 9216)

Why neural networks?
• Could scale well with more failure modes which

have less variability

input: (None, 9216)
dense 9: Dense

output (None, 100)—

dense 10: Dense
input: (None, 100)

output: (None, 3)



References 
[1] Fadhel, S., et al. "PV shading fault detection and classification based on IV curve using principal
component analysis: Application to isolated PV system." Solar Energy 179 (2019): 1-10.

[2] Walters, Joseph, H. Seigneur, E. Schneller, M. Matam and M. Hopwood, "Experimental Methods to
Replicate Power Loss of PV Modules in the Field for the Purpose of Fault Detection Algorithm
Development," 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 2019,
pp. 1410-1413, doi: 10.1109/PVSC40753.2019.8980896.

[3] Rowell, Michael W., et al. "The effect of laminate construction and temperature cycling on the
fracture strength and performance of encapsulated solar cells." 2018 IEEE 7th World Conference on
Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC &
34th EU PVSEC). IEEE, 2018.

[4] Schneller, Eric J., et al. "The Impact of Cold Temperature Exposure in Mechanical Durability Testing
of PV Modules." 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019.

[5] Ringnér, Markus. "What is principal component analysis?." Nature biotechnology 26.3 (2008): 303-
304.

[6] Nguyen, Cuong, Yong Wang, and Ha Nam Nguyen. "Random forest classifier combined with
feature selection for breast cancer diagnosis and prognostic." (2013).



Collaboration synergy through teamwork

Ryan Smith

Jon Pantano

UC F

UNIVERSITY OF
CENTRAL FLORIDA

PORDIS

N EXTera
ENERGY e•

Joe Walters, Hubert Seigneur,

Manjunath Matam, Michael Hopwood

Sandia
National
Laboratories

(Pol OSIsoft.
SOLAR ENERGY

if' uTES DC HN L tOG I Et 0 1 EeS0F,Flre:

Josh Stein, C Birk Jones

Thushara Gunda

Irina Kozinsky, Tassos Golnas

Mike Mihuc

UCF



Thank you!

2 michael.hopwood@knights.ucf.edu



APPENDIX
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With PCA

Feature Importance

PC I 0.499
PC2 0.501

Feature Importance

Current 0.538

Without PCA Powcr 0320
Voltagc 0.142


