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Hypersonic aerodynamic simulations require extensive computational resources, hindering
their usage in hypersonic vehicle design and uncertainty quantification. Projection-based
reduced-order models (ROMs) are a computationally inexpensive alternative to full-order
simulations that provide major speedup with marginal loss of accuracy. However, ROMs
can present robustness and convergence issues, and one source of these issues is the initial
guess for the nonlinear solver. This work addresses the effect that the initial guess has on
ROM robustness by testing various initial guess interpolation methods and developing a more
accurate initial guess method. An accurate initial guess is found to result in significantly
faster ROM convergence and higher robustness. In addition, it is found that certain output
quantities can be more accurately predicted using an accurate interpolation method than with
steady projection-based ROMs for hypersonic flows. Itis very important that studies examining
steady projection-based ROMs demonstrate improvements in comparison to accurate initial
guesses.

L. Introduction

Hypersonic aerodynamics simulations are important for designing reentry vehicles, missiles, and launch vehicles. It
is critical that designers are able to accurately predict forces and heating while in the design stage without conducting
expensive, time-consuming tests. Because of this, there is an increasing reliance on computational models for design
and analysis of hypersonic configurations [1].

One the main challenges associated with hypersonic aerodyanics simulations is their large computational cost:
due to the many disparate scales, typical simulation grids must be highly refined close to the body and near shock
locations, leading to a very large state space. This makes it computationally expensive to even tackle simplified
models such as Reynolds-Averaged Navier-Stokes (RANS) simulations. In addition, to design hypersonic vehicles,
engineers need to iterate through hundreds or thousands of designs, each requiring simulations at a variety of speeds,
air densities, air temperatures, angle of attack, and airfoil configurations [2], and/or varying flight conditions, vehicle
geometry deformation, turbulence model parameters, and boundary layer transition location. These can be classified as
many-query problems, because they require a large number of model evaluations with different parameters pu. It can be
computationally demanding or prohibitively expensive to run full-order models across the parameter space to identify
optimal designs and uncertainty estimates. Therefore, there is a strong need for simplified models that run within a
reasonable time frame while maintaining high levels of accuracy.

There has been strong interest in projection-based reduced-order modeling (ROM) as a computationally inexpensive
alternative to the full-order models (FOMs) for many-query problems [3—6]. Projection-based ROMs are based on
projecting the governing equations onto a subspace constructed using a limited number of full-order simulations.
Thefore, the ROM maintains knowledge of the physical equations while operating in a much lower dimensional
subspace than the FOM. This gives ROMs high accuracy and robustness without needing a large training set. Galerkin
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projection [[7-9] is the basic projection-based method but can perform poorly for nonlinear systems [10]. Least-squares
Petrov-Galerkin projection (LSPQG) is a variant that projects the fully discretized equations onto the basis and has been
shown to have improved stability and accuracy over Galerkin projection ROMs [5, [10]. Neither Galerkin projection nor
LSPG directly enforce conservation laws; both methods may violate conservation laws while minimizing an objective
function. Conservative least-squares Petrov-Galerkin (C-LSPG) projection is a modification of LSPG that enforces
global conservation over the domain [[11, 12]. An additional modification was made by Ref. [12] to develop conservative
manifold LSPG (CM-LSPG), which has a nonlinear trial subspace to ensure that physical positivity constraints are
satisfied. This work makes use of CM-LSPG ROMs to develop accurate models in hypersonic aerodynamics.

There are few works applying projection-based ROMs to hypersonic applications. In [13~15], the authors apply
Galerkin projection ROMs to thermal modeling in hypersonic flows. Blonigan et al. [12] showed that LSPG ROMs are
viable in hypersonic aerodynamic applications, demonstrating that ROMs can be over 2000 times faster than the FOM
with state errors of approximately 0.1%. However, some ROMs failed to converge due to numerical stability issues.

This work follows on Blonigan et al. [12], in developing robust ROMs for hypersonic aerodynamic applications.
While the previous paper (Ref. [[12]) demonstrated the basic ROM capability, the goal of this work is to address robustness
and efficiency rather than computational speed. We do not apply hyperreduction in this work because hyperreduction
improves computational speed but does not improve robustness. If ROMs do not converge without hyperreduction,
they will not converge with hyperreduction either, but it is more difficult to isolate the causes of nonconvergence with
hyperreduced ROMs. Therefore, to isolate and address the causes of convergence issues hyperreduction is ignored in
the preliminary work presented here. The full paper will contain numerical experiments using hyperreduction.

This paper is organized as follows: in § [[ we describe the governing equations of the full-order models, in § [
the reduced order modeling framework of CM-LSPG, in § IV we develop an initial condition subtraction method and
various initial guess methods, and describe the initial guess interpolation methods used. In § [V| we present the numerical
results using simulations of the HiFIRE-1 test vehicle. Finally, section [VI provides conclusions and possible directions
for future work as well as additional contributions that will be presented in the full paper.

II. Full-order model: Governing equations and discretization
This work considers hypersonic aerodynamics in a perfect gas (air), with enthalpy not sufficiently high for dissociation.
The governing equations are the perfect gas, compressible Reynolds-Averaged Navier—Stokes (RANS) equations for
conserved quantities u;, where
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In equation [1], p is density of the fluid, pv; is the fluid density times the fluid velocity v;, pE is the fluid density
times the total energy per unit mass E, and ¢; is a set of scalars that belongs to turbulent transport equations and #n; is
the number of turbulent transport equations. The full set of governing equations for compressible flows is given in [16].
For brevity, they are not shown here.

This work only considers steady-state RANS solutions, which can be expressed in general form as

Sfxip) =0, 2

where f is the residual vector, x € RY is the state vector and y is the vector of system parameters. The steady-state
RANS equations are discretized with a cell-centered finite-volume method [17, 18]. Appendix VI.B|shows a detailed
derivation of the discretized steady-state equations solved.



III. Reduced-order modeling
This section summarizes how projection-based reduced-order models are derived from the governing equations
presented in the previous section. Reduced-order models are constructed using a limited number of full-order model
solutions in an offline stage and can then be applied at other parameter values during the online stage. During the online
stage, ROM evaluations are used for many-query problems and should therefore be fast, accurate, and robust. This
section details the method of constructing ROMs using conservative manifold least-squares Petrov—Galerkin projection
(CM-LSPQG).

A. Least-squares Petrov—Galerkin projection
Projection-based reduced-order models estimate at state x with an approximation ¥ ~ x from an affine function

Xt p) = Xrer(p) + @ (85 ), 3)

where ® € RV*P is the reduced-basis matrix of dimension p < N and £ € R” denotes the generalized coordinates. The
basis can be computed with a variety of ways, including proper orthogonal decomposition (POD) [19], eigenmode
decomposition, or the reduced-basis method [20, 21]. Note that for LSPG, @ is not required to be orthonormal, unlike
other ROM methods such as Galerkin projection.

For steady-state simulations, LSPG substitutes the approximation x « ¥ into the FOM steady-state equations (2)),
and subsequently minimizes the residual in a weighted %-norm, i.e.,

* = arg min||Af (xper(p) + @Z; p)ll2- “4)
Z€RP
where A = I for ROMs without hyperreduction. With hyperreduction, this weighting matrix A should be sparse in the
sense that it has a small number of nonzero columns to ensure that the model incurs an N-independent operation count.
See Ref. [6] for details on weighting matrices for hyperreduction.

B. Conservative LSPG projection
Conservative LSPG (C-LSPG) is a modification of LSPG that enforces global conservation as a nonlinear equality
constraint [11]. For steady simulations, (Eq. )), C-LSPG computes a solution X that satisfies

minimize [|A f(xrer(p) + PZ; p)|l2
Ferr ©)
subject to C f(#; u) = 0.

where C € Rf“XN is a matrix that maps the residual f to the conservation violations for all n,, conserved quantities. It
is derived and defined in appendix [VI.C|. Note that C-LSPG can also be defined to explicitly enforce conservation on
subdomains of the mesh rather than globally. See Ref. [11] for additional details on conservative LSPG projection,
including conservation on subdomains, sufficient conditions for feasibility of the associated optimization problems, and
a posteriori error bounds.

C. Manifold Least-squares Petrov—Galerkin projection

A shortcoming of using a linear trial subspace to compute the approximate state ¥ in (3)) is that ¥ can contain
non-physical local phenomena for which the solver can not compute residuals, such as negative density or negative
temperature. To ensure density, temperature, and turbulence quantities are positive, Ref. [12] introduced manifold
LSPG, summarized here.

A nonlinear trial manifold ¥ ~ x replaces the linear trial subspace with the form

X(1; 1) = h(X(1; ), (6)

h(%) € RV is a clipping function, which ensures that density, temperature, and turbulence quantities can only
take physical, non-negative values. The clipping function k(%) to compute density i; and turbulence quantities
i =1,6,...n, is

Lzli = maX(E,',fti), = 1,6, R (7)



where € > 0 is some number that should be very small relative to the free stream i, and i; is the corresponding field
from ¥. The clipping function for temperature is applied to the conservative variable for energy iis, but the clipping
must ensure that temperature rather than energy is positive. The expression relating temperature and energy is

1
oT =E - E(vaj),

where ¢, is the constant volume specific heat and v; is the fluid velocity. Since ¢y > 0, T > 0 can be enforced in ¥ by
setting

. 1

fis = max | e + — [ + i3 + iy , iis | . (8)
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Note the presence of i, since the density clipping function must be applied first. Therefore, k(%) is of the form
hs(h(%)), where 7 = h{(%) applies (7) to &, and ¥ = hs(Z) applies (8) to .
Steady manifold LSPG modifies the equation 4 by substituting the approximation x «— ¥ into the FOM steady-state

equations (2), and subsequently minimizes the residual in a weighted £?-norm

£(p) = arg glin IAS (h(xrer(p) + ®Z(p)); )l 5 ©)
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The conservation constraint can be applied to the manifold LSPG minimization statement (9), resulting in the
conservative manifold LSPG (CM-LSPG) equation

£(p) =argmin [|[Af (h(xrer(p) + ®Z(1)); p))ll>
ZERP (10)
subject to C f(%; u) = 0.

IV. Initial guess and reference state methods
The CM-LSPG equation () requires both an initial guess £°(u) and a reference state x(z) to be defined, and the
convergence properties can be strongly dependent on both. This study uses various initial condition guess methods
and examines ROM convergence. It is expected that accurate initial guesses will result in faster convergence and more
robust ROMs. Performance is evaluated by constructing separate parameter training and test sets. The trial basis @ is
constructed with full-order models run at the parameters of the training set, but the convergence properties are examined
for test set parameters because we are only interested in the predictive scenario.

A. Projected FOM initial guess

An initial guess £°(¢) must be determined for each ROM, but the parameters may be arbitrary. For the training set,
an initial guess can be determined by minimizing the norm of the difference between the full-order state x(u) and the
solution in the trial subspace, given by equation [TT].

2°(p) = arg min|lx(p) — (rer(pr) + @Z)|>- (11)
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for which the solution is a projection of the full-order state on the reduced basis
20(n) = @ (x = Xrer), (12)

where ( )* designates a pseudo-inverse. Note that equation (12) holds for a non-orthonormal reduced basis ®.

When the full-order state x(u) is unknown, equation [12 cannot be used. Therefore, an interpolation method must be
used to identify an initial guess £°(u). Various approaches have been proposed for applying interpolation between the
trial subspaces [3, 4, 22, 23], but those methods only apply to unsteady ROMs. Other approaches have been proposed
for interpolation of system matrices of linear time-invariant systems [24, 25], but in this work the system matrices are
directly computed within the solver, so those methods do not apply here.

It is possible to interpolate the full-order state x(u) directly, then used the interpolated state in equation [12 to find
the initial guess £°(u). However, the interpolation must be done in the online stage and since interpolating the full-order



state is time-consuming, that method should be avoided. It is preferable to perform the interpolation in the reduced-state
space by first computing the initial guess for each case in the training set, then using those values to interpolate to obtain
initial guesses for the test set. The interpolation can be generalized as

20u) = g(R°(1)rains His 1) (13)

where g() is the interpolating function and £°(u; )i, are initial guess values at the training set parameters ;.
There are two methods of identifying £°(u;);4in. One method is to directly apply equation 12 on the training set
and use the outputs as £°(y;);,qin for the interpolation. We designate this method as the projected FOM method.

B. Reproductive ROM initial guess

Equation [12is used to calculate an initial condition for the projected FOM method, but the solutions of the CM-LSPG
equation [I0 and equation [I2 are different. If the basis ® is not truncated, the full-state is within the trial subspace;
therefore the full state can be exactly reproduced and both equations [12] and [10 will have identical solutions. However,
if the basis is truncated, the solutions can be different. In that case, more accurate initial conditions for the test set
can be produced by first running ROMs on the training set using initial conditions from equation [I2, then using the
reduced-state solution of the training set ROMs as ﬁo(ui),m,-n in equation |13 to interpolate initial guesses in the test set.
This method is designated the reproductive ROM initial guess method.

C. Interpolation methods

A variety of interpolation methods are available and are tested in this study for interpolating the initial guess
(equation [I3. A summary of each method is given here. The number of parameter points in the training set is designated
as Np,.

p

1. Inverse Distance Interpolation

Several previous works used inverse distance interpolation to construct the initial guess [12, 26]. Inverse distance
interpolation constructs a smooth interpolating function using weights linearly dependent on the inverse distance
between each sampling point and training data. The interpolating function is

N,
-’eo(ﬂ) = Z aifo(ﬂj)train (14)
i=1
The weights a; are found with Equation [13]
1 —u.
o = — 1= pill 15)
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2. Piecewise linear interpolation

Piecewise linear interpolation is constructed by triangulating the known data and applying a linear barycentric
interpolation on the vertices of each triangle. The Delaunay triangulation is performed using the Quickhull algorithm
presented in Ref. [27], splitting the parameter space into cells. The interpolating surface within each cell is the
hyperplane that passes through the known data values at the bounding points. The interpolating function within each
cell can be expressed as a linear combination of the function values at the vertices of the cell.

Nve rt
w0 5
2w = > @ W)irain (16)
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where N,.,; is the number of vertices in each cell, which depends on the dimension of the input. For parameter space
with two independent parameters, N,..,; = 3. The weights @; are found by expressing the coordinate of the sampling
point u as a linear combination of the training set points y;.
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3. Piecewise Cubic Spline Interpolation

Piecewise cubic spline interpolation finds a smooth, cubic interpolating function. Delaunay triangulation is computed
with the Quickhull algorithm [27]. On each triangle, a piecewise cubic polynomial with minimum curvature is computed
using a Clough-Tocher scheme [28]. The resulting interpolating function is continuously differentiable over the entire
coordinate space. See Refs. [27-29] for details.

It should be noted that for parameter spaces with more than two dimensions, piecewise cubic spline interpolation on
scattered data is difficult to implement, and other methods may be preferred.

4. Nearest Neighbor Interpolation
Nearest neighbor interpolation uses the training data point closest in distance to each sampling point to estimate the
sampling function. Equation [1§| gives the interpolating values

xAO(IJ) = ﬁo(ﬂs)train (18)

where
s = argmin||p — g2 19)
l

5. Radial Basis Function interpolation
Radial basis function interpolation uses a weighted sum of radial basis functions to construct a smooth interpolating
function, given by Eqn.

Np
() = e®(llu - pyl), (20)
i=1

where Y¥(D) is the radial basis function and 32?(;1) is the jth component of an initial guess. For this study, a Gaussian
basis function is used, where

W(b) = eV, 21)
where ¢ is the shape parameter.
The weights a; are found by solving the system
Ka = £)()irain, (22)
where @ € R™» is the vector of weights and
Wllpo = mollz Wl —pole - Wllpy, — soll2
Pllpg — il Pl =il - \PHMN,, -l
= : ) : : (23)
Wllpo - AN, o Wllgy - Hn, ... \P“ﬂNP ~Hn, Il2

The shape parameter € in Eqn. 21] controls the width of the Gaussian basis function. For & — 0, the basis functions
are very narrow and the interpolation function is zero everywhere except close to the known points x;. For £ — oo, the
matrix in Eqn. 23]is ill-conditioned. In practice, the shape parameter should be set as high as possible while maintaining
a condition number sufficiently below numerical precision [30]. In this work, the shape parameter is initially set to 1072
and iteratively doubled until the condition number is above 10'2. Computing the weights @; can be done in the offline
stage, keeping the online computational costs low.

6. Polyharmonic spline interpolation

Polyharmonic spline interpolation is a linear combination of radial basis functions and a polynomial term [31, 32].
The polynomial term improves fitting accuracy away from the interpolating points g, in comparison to radial basis
function interpolation. The interpolating function is
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where v € R% is a vector of the polynomial weights, where dy, is the dimension of the parameter space u. Y(b) is a

radial basis function of the form
b* ith k = 1,3,5,...
¥b) =1, ™ (25)
b In(b) with k =2,4,6,...

In this work, k = 2 whenever polyharmonic interpolation is used. The weights are found by solving the system

K L 2000 rai
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7. Preprocessing for interpolation

This study considers a case with two independent parameters. For a multi-dimensional parameter space, each
parameter must be normalized before applying interpolation. Without normalization, interpolation methods that use
distance between points to calculate weighting can result in widely differing sensitivity to the different parameters.
For example, if the variance of one parameter is much lower than the others, inverse distance interpolation would be
much more sensitive to that parameter. To prevent this, each parameter is mean subtracted and divided by the standard
deviation before applying interpolation.

V. Results (preliminary)

The numerical experiments presented here use two codes developed at Sandia National Laboratories. SPARC (Sandia
Parallel Aerodynamics and Reentry Code) [33] is a compressible CFD code for aerodynamics and aerothermodynamics,
and has capabilities to solve the compressible Navier-Stokes and Reynolds-Averaged-Navier-Stokes (RANS) equations
on structured or unstructured grids with a finite volume discretization scheme. SPARC also has capabilities for solving
the heat equation, physical chemistry, and associated equations for non-decomposing and decomposing ablators.

The ROMs are run using Pressio™, an open-source C++11 library to enable parallel, scalable ROM capabilities
for any C++ simulation code [34]. Pressio interfaces with a solver with a minimally intrusive API that requires only
the residual f(x,¢; ) and Jacobian matrix d f(x,t; i)/ 0x for a given state x, time ¢, and parameters u. Pressio and
SPARC have previously been interfaced and used to run CM-LSPG ROMs in Ref. [12], with demonstrated speedup
hundreds to thousands of times faster than full-order models.

This work studies ROMs on a hypersonic flow configuration using CM-LSPG and examines the convergence
properties when the initial condition method, interpolation method, and freestream subtraction are varied. The
preliminary results shown below do not use hyperreduction, but the full paper will include numerical experiments using
hyperreduction.

A. Flow configuration

A 2-dimensional hypersonic configuration is used to test the methods presented here. The configuration is the
HiFIRE-1 (Hypersonic International Flight Research Experimentation) vehicle [35]. The baseline case is run 30 of the
experimental results presented in Ref. [36]. The freestream conditions are presented in table [Il. Because the geometry is
axisymmetric with a zero angle-of-attack, the full-order models require a mesh only on one side of the centerline, shown
in figure [I. The mesh has 32,768 cells, corresponding to a state-space size of 196,608 since there are 6 conserved
quantities (n,, = 6). Figure 2 shows a slice of the flow colored by density.

*https://github.com/Pressio



Density 0.04 - 0.06 kg/m?
Velocity 1810.0 - 2413.4 m/s
Mach Number 6-8
Angle of attack 0.0°
Temperature 22646 K
Reynolds Number (baseline) 1x107 1/m

Table 1 Free stream flow conditions for the HIFIRE-1 vehicle results presented here.

The full-order models are run with the Spalart-Allmaras turbulence model [37]. The flow solver uses pseudo-time
stepping with a backward Euler time step and scheduled increases in CFL number. The convergence criteria are a
reduction in relative residual by 5 orders of magnitude or 25,000 iterations.

(a) Full mesh (b) Mesh around nose

Fig. 1 HIiFIRE-1 Mesh.
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Fig. 2 SPARC simulation of HIFiRE-1 at p = 0.0568, M a = 6.12. The flow field is colored by density p.

B. ROM setup

The ROM parameter space is defined by variations in Mach number and density given in table[I. The training set
has a total of 12 different points in parameter space, and the test set has 30 points. The training set points in parameter
space are chosen by Latin hypercube sampling for 8 of the points, and the four corners of parameter space make up the
remaining 4 points. The test set is determined with Latin hypercube sampling for all 30 points. Figure 3 shows the
parameters of both sets. The parameter space has wider density and Mach number ranges in comparison to Ref. [12],
and the training set is smaller.

The ROM basis is The CM-LSPG equation (equation [10) is solved with the normal equations within Pressio. The
solver is run until the relative residual L2 norm is below 10~* or after 100 iterations. The clipping functions are set at
€] =€ =€ = 1078,
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Fig.3 Test and trainings set locations in parameter space

1. Error metrics
The ROMs are analyzed using a number or error metrics. The state error is defined as

llx(u) — 2()ll2

& = Tl

(28)
where x(u) is the full state computed with the FOM and ¥ () is an approximated state. The vector X(u) is usually the
ROM solution, but we also compute %(u) for other approximated states as well. One other approximated state is the
FOM solution projected on the basis @, given by

-fFOM(ﬂ) = (I)((I))+(x(ﬂ) - xref) + Xref. (29)

Xrom () is a lower bound for the ROM state error, since it is the most accurate approximation of the FOM state
contained in the basis ®. The state error (equation 28) is also computed for the initial guess state as well.

Two output quantities that are computed from a state are the integrated wall heat flux Q,, (1) and streamwise
forces Fy(u) The wall heat flux error is defined as

e — leall(I‘) - Qwall(ﬂ)l
Qatt |Ovwari ()l

(30)

The force error is defined as .
gF. = |Fx(ll) - Fx(ll)l
) |Fx(p)]

In addition to the errors defined in equations 28] - 31}, convergence is quantified by the number of failed cases, number
of unconverged cases, and mean iterations. The ROM solver can fail to produce a solution if values exceed numerical
bounds. Alternatively, the ROMs can produce a solution but remain unconverged. Here convergence is defined by the
relative L2 residual decreasing below 10~* within 100 iterations. Finally, the mean iterations is the mean number of
iterations of cases that did not fail. Note that if some cases in the set remain unconverged, the mean iterations will be
affected by the maximum number of iterations (set here as 100 iterations).

We consider ROMs with freestream subtraction, reproductive ROM initial condition, and polyharmonic interpolation
as a baseline ROM setup. This baseline setup contains all the improvements presented in this work. Presenting the
results of a full sweep over all different setups would be excessive, so for clarity we show a limited number of different
setups.

(€19

C. Effect of number of basis vectors

The number of basis vectors p is an important parameter of ROMs dependent on the specific problem. The number
of basis vectors used should be large enough that most of the variance of the training set is captured when the training
set is projected on the trial basis. There are 12 FOM’s in the training set, but only 11 basis vectors are needed to span the



Table 2 Convergence properties and error on the test set with various number of modes. All cases have a
reproductive ROM initial guess and polyharmonic interpolation. Errors are defined as percentages, where
%e = 100€. Errors are labeled as IG for the initial guess, ROM for CM-LSPG, and FOM for the error obtained
by projecting the FOM solution x(u) on the basis @ as in (29). Error entries are colored by their error value:
red for &, > 4%, orange for 2% < &, < 4%, yellow for 1% < &, < 2%, and green for ¢, < 1%.

Number of || # failed | # unconverged Mean JoEx Go€Q,,ani YoeF,
modes p cases cases iterations || IG | ROM | FOM | IG | ROM | IG | ROM
3 0 0 215 1.04 ' : .8 )

5 0 0 22.9 : ,
8 0 31.3 ) 2.8
11 0 0 27.4 : 37 | 1.19 | 177 |

training set subspace since the data has zero mean after the reference vector is subtracted. Figure @ shows the fraction of
variance captured versus the number of basis modes used. We test ROMs separately using a trial basis truncated to
p =3,5,8, and 11 basis vectors, for which the variance captured is 99.88%, 99.97%, 99.99%, and 100%, respectively.
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Fig. 4 Fraction of variance contained by basis versus number of basis vectors

The effect of number of modes on the baseline setup (ROM reconstruction and polyharmonic interpolation) is
evaluated with the error metrics in section [V.B.1l.

Table 2 shows averaged statistics over the 30 test set ROMs for each number of basis vectors. None of the cases
failed; however 2 of the 30 cases did not converge for p = 8. The number of iterations varies between 21 and 32
iterations for the different setups. Because of the unconverged cases, the mean iterations is larger for p = 8 than the
other setups.

The initial guess state errors do not vary significantly with p, and are all between 0.90% and 1.04%. For all p, the
ROMs decrease the state error from the initial guess to values close to the FOM state error. The FOM errors decrease
with increasing p as a larger basis contains more variance in the test set, but the FOM errors are not zero because the
trial basis was calculated from training set data.

The ROM mean integrated heat flux error g¢,, ,, is between 1% and 5% for each p, but does not exhibit a consistent
trend with the number of basis vectors as &g, is largest for p = 5 and smallest for p = 11. For all p, the ROMs
increase g¢,, ,,, from the initial guess. The mean streamwise force error e, is very low (below 0.21%) for all setups
and generally decreases with increasing p. For the higher numbers of basis vectors p, the ROM streamwise force error
&r, is improved over the initial guess.

D. Effect of interpolation method

Table 3 shows statistics of the test set ROMs with different interpolation methods. All the interpolation methods
except polyharmonic interpolation have unconverged cases. All three error metrics of the initial guess are highest for
inverse distance interpolation and second highest for nearest neighbor interpolation. The error metrics of the ROMs are

10



Table 3 Convergence properties and error on the test set with the interpolation methods described in section
IV.C. All cases have a reproductive ROM initial guess and p = 11 basis vectors. Errors are defined as percentages,
where %e = 100¢. Errors are labeled as IG for the initial guess, ROM for CM-LSPG, and FOM for the error
obtained by projecting the FOM solution x(x) on the basis @ as in (29). Error entries are colored by their error
value: red for &, > 4%, orange for 2% < &, < 4%, yellow for 1% < &, < 2%, and green for &, < 1%.

Interpolation || # Cases # Cases Mean GoEx G0, un Yoer,
method failed | unconverged | iterations | IG | ROM | FOM | IG | ROM | IG | ROM
Inverse dist. 0
Linear 0
Cubic 0
Nearest N. 0
RBF 0
Polyharm. 0

Table 4 Convergence properties and error on the test set with reproductive ROM and projected FOM initial
guess methods for various number of modes p. All cases have polyharmonic interpolation. The initial guess
methods are labeled RR for reproductive ROM and PF for projected FOM. Errors are defined as percentages,
where %e = 100e. Errors are labeled as IG for the initial guess, ROM for CM-LSPG, and FOM for the error
obtained by projecting the FOM solution x(u) on the basis @ as in (29). Error entries are colored by their error
value: red for £, > 4%, orange for 2% < &, < 4%, yellow for 1% < &, < 2%, and green for &, < 1%.

1G # Cases # Cases Mean D& GoEQ,ani Goe
method # failed | unconverged | iterations IG ‘ ROM ‘ FOM | IG | ROM | IG | ROM

RR 5 0 0 22.9

PF 5 0 0 252

RR 11 0 0 274

almost the same for all interpolation methods, and it was verified that the ROMs solutions are identical to 2 decimal
places for the cases that converged whichever interpolation method is used. The radial basis function interpolation and
polyharmonic interpolation have the lowest mean iterations.

E. Effect of initial guess method

Table 4 shows tabulated results of the two initial guess methods, with comparisons for various p = 5 and p = 11.
For p = 5, the ROM state error &y, heat flux error &g ,,, and force error gf_ are identical, so the end states are the
same whichever initial guess method is used. However, for p = 11 with the projected FOM method, two of the cases did
not converge. The reconstructive ROM initial guess method has slightly fewer mean iterations than the projected FOM
method. Note that the initial guess state error &y is larger for the reconstructive ROM method than the projected FOM
method because the projected FOM method first optimizes the state error in the training set before interpolation, as
described in section [V.Al

Figure 5 shows the integrated heat flux error and streamwise force errors for each ROM in parameter space for the
setup with p = 11, polyharmonic interpolation, and reconstructive ROM initial guess. The ROMs near the center of the
parameter space are generally more accurate than ROMs near the edges of the parameter set. This suggests that it is
unlikely that ROMs that extrapolate (contain parameters outside the range of the training set) would be able to make
accurate predictions. Also note that the ROMs which have a large integrated heat flux error are generally the same ones
that have a large streamwise force error. This is likely because both output quantities will be inaccurate if the ROM state
near the vehicle body is inaccurate.

The mean heat flux errors £g,,,,, show that for this setup, on average it is better to use an accurate interpolation
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method to identify heat flux than to use ROMs. This may not be the case for all problems, and the full paper will

examine more cases.
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Fig. 5 Integrated heat flux and streamwise force error for ROMs with p = 11, polyharmonic interpolation,
and reconstructive ROM initial guess. The x marker denotes a training case and the colored circled denote test
cases.

VI. Conclusions

Robustness can be an issue for ROMs in hypersonic flows, and this work develops improvements to the initial
guess calculation that enhance robustness in hypersonic flight. Conservative manifold least-squares Petrov-Galerkin
(CM-LSPG) is applied to the HiFIRE-1 vehicle in hypersonic flight with varying Mach number and density.

It is important to have an accurate initial guess for the ROMs to converge. This work presents numerical experiments
with different initial guess methods. The reconstructive ROM method developed here improves the initial guess
and speeds up convergence. This work showed that the interpolation method can make a major difference to errors
of the initial guess. In particular, the inverse distance interpolation used for ROMs in Refs. [12, 26] is the least
accurate interpolation method. The polyharmonic and radial basis function interpolations result in significantly faster
convergence. It is also important to note that with inverse distance interpolation, the ROMs significantly increase
accuracy of integrated heat flux in comparison to the initial guess, but with more accurate interpolation methods the
ROMs actually decrease integrated heat flux accuracy. The ROMs increase accuracy of streamwise force for each
interpolation method, but by differing amounts. Both quantities are more accurate for ROMs near the center of the
parameter space than near the edges. It is important for future works to compare output quantities of ROMs to the
output quantities with an accurate interpolation method.

It is important to recognize that even with these improvements, ROMs can still have robustness issues. The ROMs
presented here have a relatively narrow density range, and significantly expanding the density range without increasing
the number of training set simulations can result in ROMs that fail or do not converge. Future work is needed to continue
to address robustness issues. In addition to the studies presented here, the full paper will contain:

* Development of a freestream subtraction method to increase ROM accuracy

* ROMs on a larger three-dimensional mesh

* Tests of CM-LSPG with hyperreduction

There are a number of possible directions future works could pursue. Future work could be directed at developing
preconditioners for CM-LSPG solvers. Future work could also examine alternative nonlinear mappings to replace POD
modes for hypersonics, as a linear basis has limitations in advection-dominated flows. The integrated heat flux errors in
the ROMs presented here are significantly larger than state errors or streamwise force errors, and future works could
target improving calculations of surface quantities to improve heat flux predictions. With continued research, ROMs
have potential as robust, accurate, and fast alternatives to full-order models for hypersonic vehicles.
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Appendix

A. Physical conservation laws
This work considers parameterized systems of physical conservation laws. The governing equations in integral form
can be expressed as

d
—/ u;(X,t; p)dx + /g,-()?,t;y) -n(X)ds(X) = / si(X,t;p)dX, i€ N(n,), Yo C Q, (32)
dt J, y w

u;(X,t; p) are the conserved quantities, which are functions of location X, time ¢, and parameters g. Equation 32]is
solved over the time domain given an initial condition denoted by u? € R such that u;(X,0; u) = u?()_c’ s 1), 1 € N(ny,),
where N(a) := {1,...,a}. g; is the fluxes associated with the ith conserved variable, and s; is the source term of the ith
conserved variable. Here, w denotes any subset of the spatial domain of interest Q ¢ R¢ with d < 3;y := dw denotes
the boundary of the subset w, while I' := dQ denotes the boundary of the domain Q; d5(X) denotes integration with
respect to the boundary. n : y — R¢ denotes the outward unit normal to y. We emphasize that any conservation law
can be expressed in the form of equations (32)).

B. Finite-volume discretization

The governing equations (32) are discretized with the finite-volume method [[17, 18], as it explicitly enforces
conservation over prescribed control volumes. A mesh M partitions the spatial domain Q ¢ R with d < 3 into Ng € N
non-overlapping (closed, connected) control volumes Q; C Q, i € N(Ng). We define the mesh as M := {Q,-}N9 and

i=1°
denote the boundary of the ith control volume by I'; := 0Q;. Each control-volume boundary I’; is further partitioned
into a set of faces. Enforcing conservation (32) on each control volume in the mesh yields

d
E/ ui(i’,t;u)df+/ gi()?,t;u)%j(f)d?‘(f):/ si(X,t;p)dX, i€ N(ny), j € N(Na), (33)
Q; Iy i

J

where n; € R? denotes the unit normal to control surface I’ 7. The finite-volume scheme forms a state vector of the
mean conserved quantities in each cell x € RN with N = Nan,, such that

1 o o . .
Fp ) = /Q wi(E 6 )%, i € Nn), j € N(VQ), (34)
j

where 7 : N(n,) X N(Ng) — N(NN) denotes a mapping from conservation-law index and control-volume index to degree
of freedom. The finite-volume scheme also has a velocity vector f(x,t; ) = f4(x,t; u) + f*(x,t; u) with f&, f5 € RN
whose elements consist of

—1 =4 - -/
f]g(i,j)(X,ﬁll) = ‘/r gV (xR ) - () d3(R),
J1 I
I ) i
Fiap®6m) = g /Q T 20 ) &5,
J j

fori € N(ny), j € N(Ng). Here, the fields gF¥ € R? and sF¥ € R, i € N(n,) denote the approximated flux and source,
respectively, associated with the ith conserved variable (per unit area per unit time). Substituting the finite-volume state
vector fQ/_ ui(X,t; ) dX — |Q;|x7( )(t; p) and associated fluxes and sources g; gf‘/’ and s; «— st in Eq. (33) and
dividing by |Q;| yields

x=flenp),  x0;p) = x(u), (35)
where xoj(l.’j)(ﬂ) 3= ﬁ fQ/ u?(f; ) dx denotes the parameterized initial condition. This is a parameterized system

of nonlinear ordinary differential equations (ODEs) defining an initial value problem, which we consider to be our
full-order model (FOM). We hereafter refer to Eq. (35) as the FOM ODE.
For steady-state problems, there is no time dependence so the FOM ODE (35)) reduces to

S ) =0,

which we refer to as the FOM steady-state equations. Here, we have abused notation and set f(x; u) = f(x,t; u). For
steady-state problems, we also refer to f(x; ) as the residual.
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C. Conservation constraints

The conservation constraint directly enforces global conservation on the mesh, and has been shown to significantly
improve accuracy over standard LSPG [11, 12]. While the conservation constraint can be applied to subdomains of the
mesh [11], there is no obvious way to partition the mesh so this work uses a global conservation constraint.

The conservation law (32) enforced globally is

4 / wiE, 15 1) d7 + / gl b )+ A3 ) = / s(Bep)dE, i€ N(n) (36)
dt Jo r Q

where 71 € R9 is the outward unit normal vector of the global control surface I'. To derive the conservation constraint,
the same finite-volume discretization employed earlier is applied to the global mesh. A global state vector ¥ € R™« is
defined as

1
Xi(t;p) = o) /Qul-(a_c’,t;p) dx, ieN(n,) 37

where X; is the ith component of the global state vector ¥. The global state vector ¥ can be computed from the state
vector x as

#(x) = Cx,
where € € R}**" has elements C; 7, , = %&k.
Similarly, the residual associated with the finite-volume scheme applied to global conservation can be expressed as
feeim) = Cf(x; ), (38)

such that subdomain conservation can be expressed as

Cf(x;p)=0. (39)

For the detailed explanation on the derivation of Eqs. (38)—(39), we refer readers Ref. [11, Section 4.1].
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