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Data-driven approaches to construct reduced chemical kinetic models, that rely heavily on
thermo-chemical datasets with full chemical kinetics, have been gaining popularity. Datasets
from direct numerical simulations (DNS) under three-dimensional (3-D) realistic turbulent
flow conditions are desirable but limited to carefully designed parametric conditions due to
the computational cost. Constructing datasets from a large ensemble of zero-dimensional
stirred reactors like perfectly stirred reactor (PSR) and partially stirred reactor (PaSR) is a
computationally efficient solution to consider the turbulence-chemistry interactions and cover
a broad range of parametric conditions. In this paper, we derive reduced chemistry models
from solutions of a large number of PSR and PaSR reactors using autoencoder (AE) neural
networks and principal component analysis (PCA), and conduct a priori examination of the
reduced models in three temporally evolving 3-D DNS jet flames featuring local extinction and
re-ignition. The results show that the reduced models derived from PaSR datasets, i.e., AE-
PaSR and PCA-PaSR, generally show significant improvement over the ones derived from PSR
datasets. Among all the reduced models, AE-PaSR shows the best agreement with DNS results
on the reconstruction accuracy and the representation of temporally evolving local extinction
and re-ignition events.

I. Introduction
An accurate description of chemical kinetics is essential for combustion simulation and hence the design of next

generation propulsion devices. Such a description with detailed chemical kinetic models for hydrocarbon fuels typically
involves hundreds of species and an even larger number of elementary reactions. Inclusion of complex detailed
chemistry models in multidimensional computational fluid dynamics (CFD) simulations for combustion engines strains
the computational capability. In spite of the large number of species in the detailed chemical kinetic models, it is
observed that there exist low dimensional manifolds (LDMs) in the high-dimensional thermo-chemical state space.
Reduced order models (ROMs) for chemical kinetics have been driven by the need to reduce the computational cost and
by taking advantage of the existence of LDMs.

Most of previous LDM reduced chemistry modeling work involves physical assumptions or simplifications of
the problem and consequently the models developed are applicable to certain regime of problems, such as flamelet
models [1] and conditional moment closure (CMC) [2] for non-premixed combustion and flamelet generated manifold
(FGM) [3] and flamelet prolongation of intrinsic LDM (FPI) [4] for premixed combustion. Recently, data-driven LDM
modeling approaches, such as principal component analysis (PCA) [5–11] and neural networks [12–16] have also been
applied to derive reduced chemistry models, wherein LDM models are derived from sampling datasets and hence
providing a data-based approach that is complementary to a physics-based model reduction. The datasets consist of
thermo-chemical state variables from experiments or simulations with a detailed chemical kinetic model. A reduced
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number of variables, such as principal components in PCA or the code layer variables in the autoencoder (AE) neural
networks, are defined as a function of the thermo-chemical state variables based on the datasets to describe the chemical
system.

Datasets are critically important in data-driven methods for dimension reduction. For the reduced chemistry
modeling, ideally datasets from high-fidelity three-dimensional (3-D) direct numerical simulation (DNS) with detailed
chemistry are desired, wherein the thermo-chemical states come from turbulent flow conditions. The high expense
of generating DNS datasets requires careful selection of the parametric conditions for such DNS. There exists an
opportunity for supplementing the data from a large ensemble of canonical configurations, such as zero-dimensional
(0-D) and one-dimensional (1-D) reactors that can efficiently cover a broader range of conditions. These canonical
reactors can be calculated at a much smaller computational cost with detailed chemical kinetic models. From solutions
of an unsteady perfectly stirred reactors (PSR), Malik et al. [6] applied PCA in conjunction with nonlinear regression
models to derive reduced chemistry for methane and propane combustion. Rahimi et al. [17] derived reduced chemistry
model for ethylene oxidization from solutions of partially stirred reactor (PaSR). In the 0-D reactors, the effects of flow
fields are approximately described by using two time scales, i.e., residence time scale �r and mixing time scale �m, and
the composition of inflow streams. Ren and Pope [18] studied the effects of different mixing models and time scales
in PaSR reactors. Recently, Zhang et al. [16] derived reduced chemistry for syngas CO/H2 combustion from datasets
composed of 2.3 millions of steady PSR reactors covering a wide range of residence time scale and composition of
inflow stream to explore the state space that might be encountered in 3-D flows. The datasets composed of a large
ensemble of the 0-D/1-D reactors at various mixture conditions and time scales can be used to derive ROMs for kinetics
which are then verified and improved by using results from 3-D DNS cases. Such a workflow provides an efficient
data-based workflow for developing reduced order combustion models, which can then be deployed in 3-D device scale
CFD simulations for validation against experiments.

In this work, we derive reduced chemistry models from a large ensemble of canonical reactors with detailed chemistry
and verify the ability to represent the state space realized in 3-D DNS with detailed chemistry. The reduced chemistry
models in Refs. [16, 19] were based on PCA and AE neural networks and were derived from the thermo-chemical dataset
of CO/H2 combustion in 0-D steady PSR at various inflow mixture conditions and residence time scales, designed based
on the target 3-D high-fidelity DNS cases in Ref. [20]. In this work, we extend the approach to develop ROMs using
datasets obtained from PaSR. We conduct an a priori examination of the ROMs in the DNS flames. The 3-D DNS cases
are temporally evolving planar turbulent jet flames at Reynolds numbers varying from 2510 to 9079 and showing strong
flame-turbulence interactions with local extinction and re-ignition. In the results section, we present the examination
results of the reduced models with regard to the reconstruction accuracy of thermo-chemical state variables and the
performance in capturing the local extinction and re-ignition behaviors.

II. Methodology
In the present work, the reduced order models for chemical kinetics are developed by using data-driven dimension

reduction methods, i.e., AE neural networks and PCA. The datasets used are composed of solutions of a large ensemble
of 0-D stirred reactors with full chemical kinetics. The objective of the paper is to evaluate the accuracy of the reduced
models derived from 0-D reactors in 3-D DNS turbulent jet flames. In the following, we summarize the AE and PCA
methods, the configurations of the stirred reactors and the DNS flames.

A. Reduced Order Models
AE and PCA are two popular dimension reduction techniques that have been applied in various scientific problems,

such as anomaly detection [21], molecular dynamics simulations [22] and biosciences [23]. Essentially, they are used to
find the mappings between the original full system x⃗ = [x1, x2,… , xnx ]

⊺ and the reduced system z⃗ = [z1, z2,… , znz ]
⊺

with much smaller number of dimensions, i.e., ℱ ∶ ℝnx → ℝnz and G ∶ ℝnz → ℝnx , where nz ≪ nx. In PCA, linear
mappings between x⃗ and z⃗ are defined based on a subset of eigenvectors that preserve the largest data variance. In AE,
nonlinear mappings are defined by bottleneck neural networks consisting of an encoder, a decoder and a bottleneck
latent/code layer in-between. The encoder part takes the high-dimensional x⃗ as input and compresses it to the reduced z⃗,
and the decoder takes z⃗ and reconstructs it back to the original space as ̂⃗x. The AE model learns by finding the optimal
weights that minimize the difference between the reconstructed output data X̂ = [ ̂⃗x1, ̂⃗x2,… , ̂⃗xnsamp ] and the original
input data X = [x⃗1, x⃗2,… , x⃗nsamp ] where nsamp is the number of samples. PCA can be reproduced by AE with linear
activation functions. More details about AE and PCA can be found in [16].
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In the reduced chemistry work, x⃗ is taken as the scaled state vector in the full thermo-chemical space, x⃗ =
2(�⃗ − �⃗min)∕(�⃗max − �⃗min) − 1 with the state vector being �⃗ = [�, T , Y1, Y2,… , Yns ]

⊺, where � is density, T is
temperature, and Y� (� = 1,… , ns) are the mass fractions of the ns chemical species. The dimensionality nx = ns + 2 is
very high when complex detailed chemical kinetic model is used, which also represents the large number of transport
equations needed to be solved in CFD. With AE and PCA reduced models, the thermo-chemical state of a chemically
reacting system can be represented by z⃗ and the number of transport equations also reduces from nx to nz. For CO/H2
combustion, it has been found in [16] that AE model can reduce the dimensionality from nx = 12 to nz = 2.

B. Configurations of canonical stirred reactors
The canonical stirred reactors used to derive reduced chemical kinetic models are PSR [24] and PaSR [18, 25–28].

The configuration of PaSR is solely presented in the following considering that PSR is a limiting case of PaSR and a
summary of PSR can be found in our previous work [16].

The PaSR is a 0-D reactor configuration with inlets and outlets. The fluid enters and exits the reactor at the mass
flow rate, ṁ. Both the total mass of the fluid inside reactor,M , and the mass flow rate, ṁ, are held constant in the work.
The residence time scale �r is defined as the ratio, �r = M∕ṁ. Inside the reactor, the fluid exhibits a coexistence of
nonhomogeneous thermo-chemical states and undergoes turbulent mixing at a rate determined by the mixing time scale,
�m.

The state distribution of a PaSR reactor can be described by a joint probability density function (PDF) f ( ⃗ ; t) or mass
density function (MDF)  ( ⃗ ; t) = �f [29] of the thermo-chemical state vector �⃗with  ⃗ being the corresponding sample
space vector. The state vector �⃗ = [�1, �2,… , �ns+1] consists of mass fractions of species and enthalpy/temperature
for combustion under atmospheric pressure in this work. The governing equation of the MDF,  ( ⃗ ; t), in the PaSR
reactor is

)
)t

= −
∑

�

)
) �

[(

!�( ⃗) −
 � − �̃�
�m

)



]

+
in − 
�r

, (1)

where in is the MDF of inflow streams and ⬚̃ is the density-weighted variable mean, ⬚̃ = ⟨�⬚⟩∕⟨�⟩. The first term
on the right hand side (RHS) represents the MDF changes due to chemical reaction !� and mixing where the Interaction
by Exchange with the Mean (IEM) model [30, 31] with a mixing time scale �m is applied. At the limiting case of fast
mixing with infinitesimal �m, the PaSR tends to reproduce the PSR with a delta-distribution for  , while at the opposite
extreme with infinite �m, it tends to behave like the plug-flow reactor with almost no mixing.

For a given set of �m and �r values, the solution of Eq. (1) is specified by the initial condition,  ( ⃗ ; 0) = 0, and
the inflow MDF, in. In the work by Correa [25, 26], a premixed mixture as the inflow condition is considered to study
lean premixed combustion. Mobini and Bilger [32] proposed the imperfectly stirred reactor (ISR) that has a similar
configuration to PaSR and allows the inflow to have a range of conditions from completely unmixed to partly premixed.
Rahimi et al. [17] and Ren and Pope [18] used two inflow streams with in being represented as a two-delta function.
The two inflow streams are a fresh stream of unburned fuel/air mixture and a pilot stream at the equilibrium state of
the fresh mixture in [17] and a fresh fuel stream and a fresh oxidizer stream in [18]. For the results reported in the
paper, two inflow streams, i.e., a fuel stream �⃗F,in and an oxidizer stream �⃗O,in at a global equivalence ratio Φ, are
considered, or equivalently, in( ⃗) = �

[


�( ⃗ − �⃗F,in) + (1 − 
)�( ⃗ − �⃗O,in)
]

with 
 determined by equivalence ratio
Φ, 
 = Φ∕

(

Φ + (1∕�st − 1)
)

, where �st is the stoichiometric mixture fraction. The initial condition is taken as the
equilibrium state at the Φ, 0 = ��( ⃗ − �⃗eq).

Eq. (1) is a high-dimensional PDE that is typically solved by using Monte Carlo particle method, where the MDF of
PaSR is discretely represented by a stochastically equivalent particle system withNp particles. Each particle has a set

of properties that are mass m(n) and thermo-chemical state vector �⃗
(n)

(n = 1,… , Np). In this work, every particle
has equal mass, m(n) = mp =M∕Np. A system of differential equations can be developed to describe the evolving of

particle states and hence the discrete MDF. Specifically, the governing equation for a particle state vector, �⃗
(n)
, is

d�⃗
(n)

dt
= −

�⃗
(n)
− ⃗̃�
�m

+ !⃗(n), (2)

which represents the contributions of mixing and chemical reaction to the state change, corresponding to the first term
on the RHS of Eq. (1). The second term on the RHS of Eq. (1) represents the changes of MDF inside PaSR caused by
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the inflow and outflow streams. When solving particle equations, at every time step,Nin particles at the inflow state
(�⃗F,in or �⃗O,in) enter the reactor and the same number of particles inside are randomly selected to flow out of the reactor.
The value ofNin is calculated as

Nin =
ṁΔt
mp

= MΔt
�rmp

=
NpΔt
�r

, (3)

where Δt is the time step size.

500 1000 1500
T (K)

0.000

0.005

0.010

0.015
PD

F
1/ m = 2000
1/ m = 5000
1/ m = 10000
PSR limit

0.000 0.002 0.004
YOH

0

2000

4000

0.0 0.2 0.4
YCO

0

10

20

30

Fig. 1 PDFs of temperature andmass fractions ofOHandCO from three PaSR reactors atΦ = 1.0, 1∕�r = 2000
(1/s), and 1∕�m = [2000, 5000, 10000] (1/s).
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Fig. 2 Effects of mixing time scale �m on mean PaSR solutions (symbols) at Φ = 1.0 and a few selected
1∕�r = [100, 1000, 2000, 5000, 10000] (1/s).

In this study, the same syngas fuel and oxidizer as in the DNS [20] are used, wherein the fuel is composed of
50% CO, 10% H2 and 40% N2 and the oxidizer is composed of 25% O2 and 75% N2 by volume. The same chemical
mechanism for syngas oxidization as in [20] with 11 species and 21 reactions is used in the dataset generation. The
number of particles is taken asNp = 5000 and the time step size is Δt = 1×10−7 s. Fig. 1 shows some sample solutions
of PaSR reactors at three mixing time scales 1∕�m = [2000, 5000, 10000] (1/s), and a fixed Φ = 1.0 and 1∕�r = 2000
(1/s). The PSR solution is also shown as the thin black dashed line. It can be seen that the PDF peaks of the scalars,
i.e., temperature T and mass fractions of OH and CO, YOH and YCO, move toward the PSR solution location with the
mixing frequency 1∕�m increasing. The same observation can be made in Fig. 2, which shows the mean solutions, i.e.,
mean temperature T̃ and mean mass fractions of OH and CO, ỸOH and ỸCO, of multiple PaSR reactors. For a given
composition Φ and residence frequency 1∕�r, the PaSR state moves from plug flow state to the PSR state as the mixing
frequency 1∕�m increases from 0 to infinity. For a fixed 1∕�m, temperature decreases with increasing 1∕�r due to less
reaction time inside reactor or more heat loss to inflow/outflow streams, consistent with PSR. The datasets used to derive
the reduced chemistry models are composed of PaSR solutions at various values of Φ, �r and �m within the range of
interest.

C. Turbulent DNS jet flames
The 3D DNS flames considered here are the temporally evolving non-premixed planar jet flames [20]. The flames

reside in turbulent fields formed of three streams that are the central fuel stream composed of 50% CO, 10% H2 and
40% N2 and the two surrounding oxidizer streams from the opposite direction composed of 25% O2 and 75% N2 by
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volume. These flames are designed with a low Damköhler number, and exhibit strong flame-turbulence interactions
with local extinction and re-ignition. Three cases, i.e., L, M and H, are available with increasing jet Reynolds numbers
from 2510 to 9079 and and also increasing degree of local extinction.

Fig. 3 Streamwise cuts of temperature T (K) at four times t = [10tj , 20tj , 30tj , 40tj] for cases L, M and H. The
jet time scale is tj = 5.0 × 10−6 (s) for all cases andH is the planar jet height [20].
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Fig. 4 Spatial profiles of stoichiometric conditional mean temperature T̃ |�st, mean and variance mixture
fraction �̃, �̃′′2, and mixing time scale �m at four times t = [10tj , 20tj , 30tj , 40tj] for cases L, M and H.

DNS results at four times t = [10tj , 20tj , 30tj , 40tj], where tj is the transient jet time scale, are considered in the
current study. Fig. 3 shows the instantaneous temperature contours of the three cases, L, M and H, at the four times. It
is seen that from case L to H, the flame temperature decreases and increasingly fine-scale flame structures are observed.
For each case, the flame evolves from the initial laminar flamelet solution to fully turbulent state under the intense
turbulent mixing at later times. From the spatial profiles of stoichiometric conditional mean temperature T̃ |�st in the
first row of Fig. 4, it is seen that the conditional mean flame temperature in all cases decreases from the initial laminar
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value, reaches to the minimum value at 20tj ∼ 30tj , and increases at 40tj due to re-ignition. It is also reported in [20]
that the flames show approximately maximum amount of local extinction at around t = 20tj and various levels of
re-ignition at t = 40tj where case L is largely re-ignited while cases M and H are not fully re-ignited yet. It is of
interest to know if the reduced chemistry models can reproduce the local extinction and re-ignition behaviors in the DNS
flames. Also shown in Fig. 4 are the spatial profiles of mean and variance mixture fraction �̃, �̃′′2, and mixing time
scale �m. Mixing time scale is defined based on mixture fraction as �m =

2�̃′′2
�̃�

with the residual scalar dissipation rate

�̃� = ⟨2�D�∇� ⋅ ∇�⟩∕⟨�⟩ − 2D̃�∇�̃ ⋅ ∇�̃. These statistical information can be used to guide the PaSR/PSR parametric
configurations in the generation of datasets.

D. Model examination
In the paper, we derive the reduced chemical kinetic models from datasets composed of solutions of 0-D stirred

reactors in section II.B using the methods in section II.A, and examine the performance of the reduced models in the
3-D DNS flames in section II.C.

Two sets of AE reduced models are examined in the following. One set is from Refs. [16, 19] derived based
on datasets from steady PSR reactors and is referred to as AE-PSR hereinafter. The AE-PSR model has a simple
architecture with one hidden layer for the encoder and decoder parts, respectively. In total, it has five dense layers,
i.e., input layer, hidden layer with nx neurons in the encoder, latent/code layer with nz neurons, hidden layer with
nx neurons in the decoder and output layer. The hyperbolic tangent (Tanh) activation function is used. The loss
function is defined as, LossAE = MSE(X, X̂) + "ele, where the first term represents the reconstruction accuracy as
the mean square error (MSE) between the original dataset X and the reconstructed dataset X̂. The second term,
"ele = max(|Y C−Ŷ C |∕Y C , |Y H−Ŷ H |∕Y H , |Y O−Ŷ O|∕Y O, |Y N−Ŷ N |∕Y N ), represents the penalty due to elemental
conservation error, where Y i is the mass fraction of element i = C∕H∕O∕N. The model is implemented in Keras 2.3.0
with TensorFlow backend [33]. It is trained on training dataset composed of about 1.14 millions of steady PSR solutions
and is evaluated on the test dataset composed of about 0.49 millions of steady PSR solutions. From the evaluation
results in [16, 19], it has been concluded that the AE model with nz = 2 can represent the syngas combustion in steady
PSR reactors with a wide range of parametric conditions accurately. The other set of AE model, which is designed to
have the same model architecture as AE-PSR, is trained with new datasets composed of statistically stationary PaSR
solutions and is referred to as AE-PaSR. Solution data of 2084 PaSR reactors are collected, or equivalently 10.42
millions of discrete combustion states, 70% of which are used to train the new AE-PaSR model.

III. Results
This section presents the examination results of the trained AE-PSR and AE-PaSR reduced models with nz = 2 in

the 3-D DNS turbulent flames. Results of the corresponding linear PCA models are also provided as a reference. The
models are examined from two aspects, i.e., the reconstruction accuracy of thermo-chemical state variables and the
reproduction accuracy of local extinction and re-ignition events.
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Fig. 5 Global relative RMSE error of T and mass fractions of OH and CO for cases L, M and H.
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Fig. 5 shows the global relative Root Mean Square Error (RMSE),

"RMSE,� =
1

��,max − ��,min

√

√

√

√
1

NDNS

NDNS
∑

i=1

(

�(i)� − �̂(i)�
)2
, (4)

of scalar �� = T ∕YOH∕YCO for all three DNS cases L, M and H, where �(i)� is the DNS value in one grid cell and �̂(i)� is
the corresponding reconstructed result using the reduced models, i.e., PCA-PSR, PCA-PaSR, AE-PSR and AE-PaSR.
The global relative RMSE error "RMSE,� is calculated based on values from the DNS cells (i = 1,… , NDNS) at all four
times t = [10tj , 20tj , 30tj , 40tj] that are in the main jet flow area roughly defined as �(i) > 0.001. From Fig. 5, it is seen
that the reduced models, especially the AE reduced models, trained based on PaSR reactors (red bars) generally show
improved reconstruction accuracy compared to the ones trained based on PSR reactors (blue bars). The improvement is
as expected considering that the interactions of chemistry and turbulent mixing have been incorporated in the PaSR
reactors and therefore the combustion states from the PaSR reactors are expected to be a better representation of
combustion manifolds of the DNS flames. Some exceptions are observed for PCA reduced models in case L and M
for OH reconstruction where PCA-PaSR shows a slightly larger error than PCA-PSR. This can be explained by the
inadequacy of the generic linear PCA with nz = 2 in representing the complex combustion states in the datasets as
reported in [16]. More advanced PCA models, such as in [12], are available but beyond the scope of this paper.
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Fig. 6 Normalized joint histogram contours of T and mass fractions of OH and CO from DNS, and from PCA
and AE models, for case L.

Figs. 6 and 7 show the normalized joint histogram contours of temperature and mass fractions of OH and CO
from DNS and from the reduced models, i.e., PCA-PSR, PCA-PaSR, AE-PSR and AE-PaSR, for two cases L and
H. The histogram are calculated based on DNS results from all four times. From the figures, it is seen that all the
reduced models perform well in reconstructing CO for both DNS flames. For temperature reconstruction in the first
row, the reduced models trained from PaSR reactors show significant improvement compared to the ones from PSR
reactors, especially at the relatively low temperature regions where both the PCA-PSR model in the first column and the
AE-PSR model in the third column show an over-prediction with a two-branch structure. The multi-mode behaviors are
caused by the solution distribution of steady PSR reactors, which is shown as the S-curve with three branches [34]
and consequently the combustion states between the branches are missing in the PSR datasets used to train PCA-PSR
and AE-PSR models. The top peak histogram locations for TDNS = 500 K of PCA-PSR and AE-PSR models are
around T = 1000 K, which is roughly the lower end of the middle branch on the S-curve as shown in [16, 19]. For the
reconstruction of OH, the reduced models trained from PaSR reactors also show significant improvement compared to
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Fig. 7 Normalized joint histogram contours of T and mass fractions of OH and CO from DNS, and from PCA
and AE models, for case H.

the ones from PSR reactors, even for case L in which we observed the opposite trend for the global RMSE error of
PCA reduced models in Fig. 5. The PCA-PSR models in the first column of Figs. 6 and 7 are both observed to predict
nonphysical negative OH mass fractions. The nonphysical behaviors are largely eliminated in the PCA-PaSR models.

Thus far, we have compared the reconstruction accuracy of the four reduced models, PCA-PSR, PCA-PaSR,
AE-PSR and AE-PaSR. It is observed that the reduced models trained from PaSR reactors, i.e., PCA-PaSR and
AE-PaSR, generally show significant improvement over the PCA-PSR and AE-PSR reduced models. Among all the
models, AE-PaSR performs the best. The above observations are made based on DNS results from all the four times
t = [10tj , 20tj , 30tj , 40tj]. It is known that the DNS flames are temporally evolving flames experiencing various level
of local extinction and re-ignition. In the next, we assess if the reduced models can capture the local extinction and
re-ignition temporal behaviors.

Fig. 8 shows the PDF of OH mass fraction conditional on mixture fraction at two times t = [20tj , 40tj] for the three
cases L, M and H. The time t = 20tj approximately is when the maximum level of local extinction occurs and the
later time t = 40tj corresponds to the time when the flame is re-ignited, as reported in [20]. The same observations
can be made from the DNS conditional PDF results in the first row of Fig. 8. The PDF peak locations move toward
higher OH mass fraction locations from t = 20tj to t = 40tj . Also, from case L, to M and H, more local extinction is
observed with PDF peaks moving toward low OH mass fraction direction. Plots from the second row to fifth row show
the reconstruction results of model PCA-PSR, PCA-PaSR, AE-PSR and AE-PaSR, respectively. Overall, all the reduced
models capture the increasing trend of PDF peak locations from 20tj to 40tj as in DNS, as well as the decreasing trend
of PDF peak locations from case L to M and H. PCA reduced models are observed to predict narrower conditional PDF
distributions than DNS and AE reduced models, which is attributed to the limited combustion states that a linear model
can represent. A large proportion of OH mass fraction values are predicted to be negative in PCA-PSR but very few in
PCA-PaSR, consistent with the observations in Figs. 6 and 7. The AE-PSR model in the second last row of Fig. 8
overpredicts the maximum OH mass fraction and shows a large amount of local extinction events with zero OH mass
fractions at lean mixture fraction regions for all the three cases at 20tj , compared to DNS. The agreement with DNS is
improved in the AE-PaSR model shown in the last row, in which the maximum values are decreased and more nonzero
OH mass fractions are found at the fuel lean regions at 20tj . Overall, the reduced models derived from PaSR show
better accuracy and the AE reduced models outperform the PCA reduced models. The observations are more noticeable
in Fig. 9.

Fig. 9 shows the comparison of conditional mean OH mass fractions on mixture fraction, ỸOH|�, from DNS (empty
circles) and from the four models (lines), for the same cases as in Fig. 8. All models are observed to capture the trend
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Fig. 8 Conditional PDF of OH mass fraction on mixture fraction � from DNS, PCA and AE models for cases
L, M and H at times t = [20tj , 40tj].
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Fig. 9 Conditional mean of OH mass fraction on mixture fraction � from DNS, PCA and AE models for cases
L, M and H at times t = [20tj , 40tj].

from local extinction at 20tj to re-ignition at 40tj and the increasing amount of local extinction from case L, to M
and H, with some deviations. The PCA-PSR model (blue solid lines) presents negative conditional mean values and
the PCA-PaSR model (red solid lines) overpredicts the conditional mean values at almost all mixture fractions. The
AE-PSR model (blue dashed lines) also overpredicts the conditional mean values around the stoichiometric conditions.
The overprediction is alleviated in the AE-PaSR model (red dashed lines). Among the reduced models in Figs. 8 and 9,
the AE-PaSR model shows the overall best agreement on conditional PDF distributions with DNS at all times for the
three cases. The improvement in AE-PaSR could be attributed to the inclusion of mixing effects on the combustion
state in PaSR, the significance of which has been widely acknowledged. Previous studies on PaSR [18, 28] have also
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shown that the combustion states are sensitive to the mixing models. Currently the IEM mixing model [30, 31] is used.
Explorations of other mixing models, such as the modified Curl model [35] and the Euclidean Minimum Spanning Tree
(EMST) model [36], in constructing the PaSR datasets are expected to be able to improve the reduced models further.

Conclusions
Reduced models for chemical kinetics were derived from datasets composed of a large ensemble of 0-D PSR and

PaSR reactors using AE neural network and PCA methods. The four reduced models, i.e., PCA-PSR, PCA-PaSR,
AE-PSR and AE-PaSR, were examined a priori in the 3-D temporally evolving jet flames featuring local extinction and
re-ignition. It was found that for the syngas combustion in the DNS flames, the AE-PaSR model with two reduced
variables can represent the thermo-chemical state satisfactorily. More specifically, it captures the local extinction
and re-ignition behaviors and shows the best agreement with DNS data. It was also observed from the comparison
among the reduced models and DNS results that the reduced models trained from PaSR datasets, i.e., PCA-PaSR and
AE-PaSR, show significant improvement over the models trained from PSR datasets, i.e., PCA-PSR and AE-PSR. The
improvement indicates the importance of considering the interactions of chemistry and turbulent mixing in dataset
generation for reduced model construction. Interesting future work include considering other mixing models, 0-D
stirred reactor network for training/test datasets and applying the reduced models in 3-D CFD simulations.
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