Data optimization for large batch distributed
training of deep neural networks

Shubhankar Gahlot
Oak Ridge National Lab
Oak Ridge, USA
Email: sgahlot@hawk.iit.edu

Abstract—Distributed training in deep learning (DL) is com-
mon practice as data and models grow. The current practice for
distributed training of deep neural networks faces the challenges
of communication bottlenecks when operating at scale, and model
accuracy deterioration with an increase in global batch size.
Present solutions focus on improving message exchange efficiency
as well as implementing techniques to tweak batch sizes and
models in the training process. The loss of training accuracy
typically happens because the loss function gets trapped in a
local minima. We observe that the loss landscape minimization
is shaped by both the model and training data and propose a data
optimization approach that utilizes machine learning to implicitly
smooth out the loss landscape resulting in fewer local minima.
Our approach filters out data points which are less important to
feature learning, enabling us to speed up the training of models
on larger batch sizes to improved accuracy.

I. INTRODUCTION

Distributed strategies for scaling DL have become the
cornerstone of solutions to the problems that arise due to ever
growing data and model sizes. Scaling a DL workload requires
careful calibration of compute, I/O, and communication among
the compute nodes [1]. In addition, we need to use large
batch sizes to achieve weak scaling to make full use of the
parallel hardware. We achieve training speedup by increasing
the overall throughput of the system with fewer updates
of individual model replicas. Distributed strategies, however,
present a set of challenges [2] that arise when using large
batches across distributed computing platforms:

Challenge 1: Larger mini-batch sizes average the gradients
for large samples thus reducing the variance and providing
better estimate of model weights [3]. The goal is to take bigger
step sizes and in turn make the optimization algorithm progress
faster. However, as shown in [4], increasing the mini-batch size
leads to a drop in accuracy and leads to the generalization gap
- difference in accuracy between training and testing.

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for US government purposes.
DOE will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

Jungi Yin
Oak Ridge National Lab
Oak Ridge, USA
Email: yinj@ornl.gov

Mallikarjun (Arjun) Shankar
Oak Ridge National Lab
Oak Ridge, USA
Email: shankarm@ornl.gov

Challenge 2: When using large clusters, it is harder to
achieve near-linear scalability as the number of compute nodes
increases, especially for models with a high communication
bandwidth requirement. In both data parallel and model par-
allel distributed strategies, the communication step usually
becomes the bottleneck as the number of GPUs increases. To
improve performance for such distributed training systems, we
need faster compute, more efficient bandwidth utilization, and
more efficient collective primitives that can handle a system
with thousands of GPUs.

It has been shown [2, 5] that the loss landscape is a function
of both the DL model and the training data. Current scaling
techniques focus more on parallelizing the workloads through
data parallel training, but they suffer at large scale as the
training batch size grows. This is because the likelihood of the
optimization process being stuck in a local minima increases
with increasing batch size. Our goal is to empirically identify
techniques to effectively smooth the loss landscape and also
develop guidelines for optimizing batch sizes for training. We
address this by exploring the effect of batch size on model
convergence and accuracy. Our experiments apply to ResNet
models using the CIFAR-10 [6] data set. Our contributions
are as follows:

o We present empirical evidence for the non-linear cor-
relation between batch size and model accuracy for
increasing batch sizes from 16 to 20,480. We provide
recommendations for the appropriate batch sizes to use
for the particular ResNet models.

o We develop techniques using machine learning (ML) to
empirically characterize data quality, and propose a data
optimization approach to model scaling. We cluster data
points using ML and remove those classified as noise. We
use the remaining data to train another network (while
keeping the testing data unchanged) to equivalent and
even higher levels of accuracy for certain large batch sizes
thus saving system bandwidth and training time.

e We compare the scaling efficiency for ResNet mod-
els between PyTorch’s built-in distributed data parallel
(DDP) and the Horovod [7] communication library for
up to 1536 V100 GPUs and find that the overheads of
the dynamic messaging queue in Horovod get in the
way of achieving the benefits expected from improved

overlapping of communication and computation.

The rest of the paper is structured as follows. We discuss
the background and context for our work in Section II. We
present the details of our methodology and experiments in
Section III. Section IV discusses our results along with
findings and recommendations. We conclude in Section V
with a discussion of future extensions.

II. BACKGROUND AND CONTEXT FOR DATA-OPTIMIZED
SCALING

A. Background

We list a few concepts necessary for the description that
follows.

Dimensionality reduction: Dimensionality reduction is the
process of transforming data from a high-dimensional space
into a low-dimensional space so that the low-dimensional rep-
resentation retains some meaningful properties of the original
data, ideally close to its intrinsic dimension.

Feature extraction using CNN: Feature extraction may be
deemed a data reduction technique. In a CNN the output of
a convolutional layer captures features (feature maps) of the
input data. The last convolutional layer captures the finest
features (edges, curves, etc) from the data that it is trained on.
Hence, we are interested in the output of that last convolutional
layer and this process in general is called feature extraction
using a CNN [8].

t-distributed stochastic neighbor embedding (t-SNE): t-SNE
is a technique for dimensionality reduction that is particularly
well suited for the visualization of high-dimensional data sets
[9].

Clustering: Cluster analysis or clustering is an unsupervised
machine learning technique in which more similar (based on
some metric) data points group together to form a cluster.
There are various criteria for clustering. We use DBSCAN
[10] for clustering data points in feature space because it is
a density based technique and therefore doesn’t assume any
apriori distribution and can be scaled to large number of data
points easily.

B. Data Quality Context and Scaling Objectives

e Defining data quality: While there has been some work
on relating physical attributes of data sets such as data set
equilibrium, size, quality of label and contamination to
model quality [11], there has been little to no significant
work on how intrinsic properties of a data set affect model
training performance. A central reason is because data
quality is defined differently for different types of data -
ranging widely from domain specific to broad information
theoretic measures. For example, quality metrics for
traditional image data are different for speech signal data
or other types of higher order spectral image data. Our
approach is to use machine learning to filter out data
points which are not relevant to training effectiveness.
This gives us a way of thinking about how the quality
of data elements affect the training outcomes. We use
unsupervised techniques like dimensionality reduction

and clustering to categorize data points and filter out
those we classify as “noise” in feature space. Various
dimensionality reduction, clustering, and data sampling
techniques may be used for this step with different
degrees of effectiveness.

o Feature (space) noise vs. Gradient descent noise: Feature
(space) noise refers to the kinks and troughs in the
loss landscape as described in [5] that can hinder the
optimizer to advance towards the global minima whereas
gradient descent noise refers to the noise in stochastic
gradient descent (SGD) which gives the gradient descent
its stochastic nature. It is known that as the batch size
increases, stochasticity decreases, and therefore we can
improve generalization either by adding noise to the SGD
or by smoothing out the loss landscape. (This is similar
to the role of skip connections in ResNets [5].)

e Smoothing the loss landscape: The loss landscape is
shaped by the model as well as by the data. The higher
dimension “topography” of the loss function determines
how well the model will converge and to what accuracy.
There can exist kinks and twirls in the loss landscape
due to data points irrelevant to feature learning, which
can make the model convergence a challenge especially
at large batch sizes. If we can identify and remove those
data points, the loss landscape would become smoother
and easier for the model to move towards convergence.
By classifying noise in feature space and removing them
from the data set, we aim to speed up convergence.

o Distributed large batch training: There has been sig-
nificant work applying data distribution to scale deep
learning workloads. Models using batch sizes of 64k have
been trained in under 4 mins [12] using techniques such
as Layer-wise Adaptive Rate Scaling (LARS) [13] and
Adaptive Batch Sizing. However, we focus our attention
on scaling from an empirical, intrinsic data quality (or
effectiveness) perspective.

In the work we describe here, we take a data optimization
approach to model scaling and connect the effectiveness of
a data item to the features it enables in a trained model.
We remove the data points classified as noise to feature
learning and retrain a new model at scale. Our hypothesis
is that clustering (and/or sampling) and removing data points
classified as noise in feature space will filter data in such a way
that it will smooth out the loss landscape. This will facilitate
gradient traversal and thereby accelerate model convergence.

III. METHODOLOGY AND EXPERIMENTS
A. Conceptual Overview

We use a pretrained network and treat data quality as the
output of a machine learning technique which can be used
to remove data elements less significant to training. This
helps smooth the loss landscape and thus acts as a data-
optimized approach to distributed training and model scaling.
Figure 1 outlines this process. The pipeline begins at the
left by processing the data in a pretrained network. Next,

® 7o o
| ;i | N OF\N NI R
O S ".d
‘v O\\'O 55::—-- :é%k
O] EIRIN LT

Extract features

?

Data Use a pre-trained network

Reduce dimensionality (tSNE)

O
OpC,
O,

Train a smaller network
using the filtered dataset

\)
\
- E

Clustering (DBSCAN) to
classify noise and filter data

Fig. 1. Steps showing the process of applying data optimized strategy by (1) fine tuning a pretrained network, (2) Extracting and reducing dimensionality by
PCA / t-SNE, (3) Clustering using DBSCAN to remove noise and (4) Training another network faster and at improved accuracy.

the data elements that apply to the primary clusters of the
penultimate (n — 1th) layer are compactly represented through
dimensionality reduction (with PCA and t-SNE). These data
elements are clustered using DBSCAN to remove what we
consider “noise”. Finally, we train another smaller network,
faster, and at improved accuracy.

More formally, let us represent CIFAR-10 data set by a
matrix as follows:

Xso € RP0000x3x28x28 _ (1)
We represent a batch as follows:
X, € be3x28><28 o (2)
(NCHW) where N or b is the batch size. Now let’s define the
feature extractor neural network (NN) by
Y= f(x79) - (3)

where x € R3%28%28 jg one of the image examples and 6
is the value of parameters NN learns that result in the best
function approximation. Since y is the set of features and
output of the penultimate layer therefore,

R512x1

y & [R2048x1

Now, we further reduce the dimensionality of y using t-SNE
t.

for ResNet-18 and 34,

— (4
for ResNet-50, 101 and 152 (4)

y =t(y.¢)— (5)

where ¢t maps y — y € R2*! and is parameterized on
¢. Next, we perform clustering on each class individually
using DBSCAN algorithm to classify and filter out noise.
Let d denote the DBSCAN function, parameterized on -,
that maps ylc — y;a where ¢ € [1,2,3,4,5,6,7,8,9,10]
denotes individual class label and o € [0, 1], 0 for noise and
1 otherwise.

y::a = d(y/cvﬁy) - (6)

Therefore, y'co and y'Cl denote data points classified as noise
and not noise respectively for class c. Finally, we combine all
images i.e. y.,s, resulted from filtering and train a smaller
network.

Resnet152

Fig. 2. Visualizing output of extracted features from the fine-tuned ResNet-
152 using t-SNE.

B. Process

We expand on the data set details for the steps listed above.

1) Initial training:: First, we train ResNet-152, 101, 50,
34 and 18 from scratch on the full CIFAR-10 data set on a
single GPU with a batch size of 32, 64, 128 and 256 as well
as perform distributed training on 8 GPUs with batch sizes
ranging from 16 to 20,480. We call this complete CIFAR-
10 data the Full data set. We also use a pretrained model
as a point of comparison and find it helps identify features
effectively thus saving time and computation.

2) Extract features using CNN: Next, we focus on the last
fully connected layer to extract features using the model as
seen in Figure 2 [14]. There are 512 neurons in the pen-
ultimate layer of ResNet-18 and ResNet-34 models and hence
will produce 512 features whereas ResNet-50, 101, and 152
will produce 2048 features.

3) Reduce dimensionality using t-SNE: We further reduce
the dimensionality of these features to 2 dimensions using t-
SNE (and to also help visualize them.) The t-SNE visualization
using ResNet-152 of CIFAR-10 test set for all classes shows
how the model has learnt to classify the CIFAR-10 data set
effectively. We now use the same model to visualize the
training data set and apply the DBSCAN clustering technique
to classify noise in the next step.

4) Clustering to classify and filter data: Next, we cluster
the training data set using DBSCAN and filter out the data
points (images) classified as noise. (These appear as grey dots

TABLE I
AMOUNT OF DATA REDUCTION

Network used for feature extraction [[Filtered data size (reduction) |

ResNet-152 98.76% or 49380 images (1.24%)
ResNet-101 94.87% or 47438 images (5.12%)
ResNet-50 92.66% or 46333 images (7.34%)
ResNet-34 93.45% or 46725 images (6.55%)
ResNet-18 93.79% or 46895 images (6.21%)

in Fig 3 - source code is available in [14]. Our code includes
an interactive visualizer for t-SNE and DBSCAN which can
be used to glance over the images classification - for user
oversight.) We remove the images classified as noise from the
CIFAR-10 data set and re-purpose the remaining images to
train a smaller network. We call our new data set Network
filtered data.

Fig. 3. Applying DBSCAN to the t-SNE output, noise shown in black
(Automobile).

Different networks (ResNet-18, 34, 50, 101 or 152) achieve
different levels of data reduction as shown in Table 1.

5) Train a smaller network: Finally, we use the Network fil-
tered data from ResNet-101 to train ResNet-18. Our rationale
in using ResNet-101 is to strike a balance between accuracy
and data reduction. Using ResNet-101 to reduce data shows
promising results and strikes a balance between data reduction
and accuracy.

IV. EMPIRICAL OBSERVATIONS
A. Batch Size Considerations

We train different ResNet-* models on CIFAR-10 data
set for 50 epochs using the SGD optimizer and empirically
establish for a wide range of batch sizes (from 16 to 20,480)
that model accuracy is not linearly correlated with the batch
size. Our observations suggest that there is a preferred batch
size for this class of models at which the highest accuracy will
be achieved at different learning rates.

We start with a set of rounds of single GPU training
then move to multi GPU distributed training to verify this

Learning Rate Vs Optimum Batch Size (Single GPU)

= P P
=} R th
[} 4 =

s
=)
=]

Optimum batch size

128 . . L %]
% Resnet
e 18
- -
4 . . @ [} P
& 50
2 . ® » " s 101

| J
L]
=
o
4

g " % B & o A @ o &
& N Jb o B = o v v
Q(') Q(') Q'Q Q(') Q'Q Q'Q Q'Q Q'Q QQ %N
Learning rate (jitter added to show overlapping peints)

Fig. 4. Learning rate vs. Preferred batch size for single GPU

behavior. This study empirically identifies that there exists
an optimal batch size as seen in Figure 4 at which the
highest accuracy is achieved and beyond which accuracy drops
gradually, as shown in Figure 5, as the batch size increases.
This low accuracy for smaller batch sizes applies to batch
normalization computation and is explored further in [15].
Briefly, batch normalization (BN) addresses the problem of
internal covariate shift in the neural network by reducing the
dependency of the distribution of the input activations of each
layer on all the preceding layers. Let us consider batch X,
from (2) of size of b

c~\»—*

b
Zml, and UX,, Z — 1ix,) —(7)

For a layer of the network with d-dimensional input,
z = (2, ... 2¥), each dimension of its input is then
normalized separately,
(k) _ ~(k)

x; —
NONEEY Hx, (8)

5’%?2 +e
; .o,k (k)? .
where k € [1,d] and i € [1,m]; py, and oy, are the per
dimension mean and variance, respectively. The normalized
values i(k) are then further scaled and shifted by the learned

parameters (*) and g(*)

k A (k
v =y W2+ 5® — (9)

For the case of a convolutional layer, with a feature map of
size p X g and batch size b, the sample size for the estimate of

ﬂ(k) and ag()’ is given by b X p x ¢, while for a fully-connected
layer the sample size is simply equal to b. From (7) it can be
concluded that for very small batch size b, the estimation of the
batch mean and variance can be very noisy, which may limit
the effectiveness of BN in reducing the covariate shift. On the
contrary, however, it is well known that too large of a batch
size will lead to sub-optimal model convergence and thus poor

generalization (although currently it’s not known why this is

Learning rate 0.001 Learning rate 0.012

Resnet
— 18
— 34
— 50
— 101
152

06

=
[

=
=

N

Validation Accuracy

=
w

Resnet

— 18 |
—_ 3 b \ - {
02 — = \f'\
| — 101 R 02

152

01
1w 0° 104 1w 07 104
Batch Size (log scale) Batch Size (log scale)

Learning rate 0.078

Learning rate 0.089

Resnet
— 1
—_— 34
— 50
— 101
o1 152

Resnet
— |
— m J
— 50 N ol
— 1{):

152

1w 107 10¢ 10° 10° 10
Batch Size (log scale) Batch Size (log scale)

Fig. 5. Large batch size vs. Accuracy for different Ir. Accuracy increases until it reaches an optimum batch size and then starts to gradually decrease.

s0). For the convex functions we are trying to optimize, there
is an inherent tug-of-war between the benefits of smaller and
bigger batch sizes.

Batch size vs. Accuracy curves for all ResNet models in
Figure 5 tend to run closer and peak together for lower
learning rates and diverge as learning rate is increased. This
is because for smaller learning rates the optimization step is
small for all networks and the resulting variance irrespective
of the different loss contours for the networks. Separately,
accuracy values for smaller networks like ResNet-18, 34 tend
to drop gradually whereas accuracy for bigger networks drops
suddenly after achieving the optimal accuracy. This behavior
may be attributed to the fact that the larger networks have more
complex loss function shapes and hence the optimization step
often gets trapped in a local minima.

B. Data Optimized Approach Results

Here we modify the loss landscape by removing noisy data
points for ResNet-18 for both small (<256 images) as well
as large batch sizes (32 images per GPU x 8 GPUs i.e.
256 images to 1310 images per GPU x 8 GPUs i.e. 10480
images). We compare our results for the Network filtered data
against Full CIFAR-10 data set and Randomly filtered data. We
experimented using multiple runs of different weight decay
(L2 reg) values of 0.005, 0.01, 0.012 and 0.0135 for small
batch sizes and multiple runs of same weight decay value of
0.01 for large batch sizes.

1) Small batch training: For a batch size of 256, as shown
in Figure 6, the network achieves top-1 accuracy of 83.2%
at weight decay (L2 reg) of 0.005 on Network filtered data
as compared to 82.6% at weight decay of 0.012 on Full data
and 80.9% at weight decay of 0.0135 on Randomly filtered
data. However, as the batch size is reduced, the accuracy of
the Network filtered data decreases. For batch size of 64 top-1
accuracy on Network filtered data is 81.8% at weight decay
of 0.005 as compared to 79.2% for Randomly filtered data at
weight decay of 0.012 and for batch size of 128 top-1 accuracy
on Network filtered data is 82.7% at weight decay of 0.005 as
compared to 80.5% for Randomly filtered data at weight decay
of 0.005. Accuracy on Network filtered data always remains
higher than on Randomly filtered data which is to be expected

because the network filtered data is intrinsically biased towards
more accurate classification input data elements.

The neural network does better on Network filtered data
does than both Randomly filtered and Full data for smaller
regularization values. Thus, we use the lowest regularization
value of 0.005 for doing large batch size analysis which we
shown in Figure 7 and discuss next.

2) Distributed large batch training: Our data optimized
strategy to improve accuracy by manipulating the loss land-
scape shows promising results for batch sizes larger than 6k
as seen in Figure 7. For an average of 4 runs and batch sizes
of 6272 to 10368, the neural network consistently achieves a
higher top-1 accuracy on Network filtered data than on Full
data. For a batch size of 6272, the network achieves top-1
accuracy of 77.5% on Network filtered data and 75.2% on Full
data. When compared to training on Randomly filtered data the
network consistently achieves a higher accuracy for all batch
sizes on Network filtered data. However, for smaller than 6k
batch sizes the accuracy curve on Network filtered data is well
within the error bars of the accuracy curve on Full data so we
can conclude that the model performs as well on the Network
filtered data as it performs on Full data. Also, as expected the
variance in accuracy is higher for larger batch sizes because
the larger forward optimization step tends to wiggle around the
global minima. A likely cause is that the lack of data points
removed is being compensated by the transformations applied
to the remaining data points.

C. Communication Characteristics and Performance

Besides the data-optimized reduction resulting in improved
convergence discussed in the above sections, the commu-
nication performance involved in large batch training also
plays an important role with respect to time-to-solution. The
data parallel approach, where the global batch size is divided
among model replicas, is one of the leading approaches to
scale up. (The other approaches include model parallel and
parallel hyper-parameter search.)

In Figure 8, we compare the 2 most popular distribution
libraries for data parallel using PyTorch: 1) Horovod and
2) Distributed Data Parallel (DDP). Horovod, a third-party
plugin, supports a novel communication pattern in which

Learning rate 0.01

081
0.83

=)
=
]

0.80

=)
=
=

079

=
=
=]

Validation accuracy
Validation accuracy

Weight Decay (L2 reg)
— 0005
— 001
— 0012
— 0013
00135

=)
)
@

078
077

100 125 150 175 200 225 250 75 100 125

Batch size
Network filtered

Fig. 6. Small batch size vs.

tensors ready to be “allreduced” are placed into a queue
(controlled by the buffer size and cycle time parameters) first,
and depending on which set of tensors are ready the commu-
nications are scheduled dynamically. As shown in Figure 8(a)
and (b), for one batch update, there is a long negotiation
phase to fill up the tensor queue and the communication is
divided into several allreduce calls to maximize the overlap
between communication and computation (see Figure 8(a) 2
kernel streams). However, the overhead of dynamic queuing
undermines its benefit, and the scaling deteriorates near 1000
GPUs. DDP, on the other hand, is a built-in library within
PyTorch which handles the tensor reduction in static order
and can also hide some communication cost by overlapping
communication and computation (see Figure 8 (c)). For the
scaling comparison in Figure 8, we use default parameters for
buffer size and cycle time for Horovod, default message counts
for DDP. Tuning Horovod parameters for 96 GPUs presents
only marginal improvements and DDP demonstrates an overall
superior scaling for large batch distributed training of ResNet
models.

V. CONCLUSION

Large-scale deep neural networks require a large amount
of computation to converge to acceptable testing accuracy.
Research in efficient and scalable training mostly focuses
on efficiently distributing the data to perform data-parallel
computation on multiple nodes. However, data communication
between machines in the large-scale system becomes the
bottleneck of the system throughput. While using a large mini-
batch size can improve the scalability and throughput of the
system, it is hard to keep the generalization gap small when
data is divided into batches. In this study, we empirically
approach this problem from the input data perspective and
propose a data optimized strategy for large batch distributed
training. We use traditional machine learning techniques (t-
SNE and DBSCAN) to refine data quality and remove data
points that may be deemed to appear as noise in feature space.
We find that for certain large batch sizes of about 6k and above
we achieve better performance, and for batch sizes smaller

Learning rate 0.01

Batch size
Randomly filtered

Learning rate 0.01

L
o
o
)

o
=)
=

o
o
=]

Validation accuracy

Weight Decay (L2 reg)
— 0.005
— 001
— 0012
— 0013
0.0135

Weight Decay (L2 reg)
— 0.005
— 001
— 0012
— 0013
0.0135

225

=3
juy
@

150 175 200 225 250 75 100 125 150 175 200 250

Batch size
Full

Accuracy for network filtered, randomly filtered and full CIFAR-10 data sets.

Learning rate 0.01

0.850
0825
=, 0.800
()
e
o
o 0775
=
=
2 o750
[
=
; 0725
Data Type
0.700 Full
— Metwork filtered
DETS T Randomily filtered
Qﬁ"' A}.\b g:'}y 9.’{1 @.;,: @__’.,._%
Batch Size

Fig. 7. Large batch training accuracy for Full CIFAR-10, Randomly filtered
and Network filtered data (Avg. of 4 runs). Network filtered data gives at least
the same accuracy as full data and outperforms randomly filtered data.

than 6k, we achieve similar accuracy compared to when a
model is trained on all the data. For large-batch training in
practice, we find that that the PyTorch built-in distributed
data parallel messaging library scales better than Horovod for
ResNet models trained on up to 1536 V100 GPUs.

With regards to future extensions of this work, it is worth
considering performing hyper-parameter tuning for the DB-
SCAN and t-SNE algorithms instead of using the default
values and using the technique recursively as described in
Figure 1. This will give us a more robust clustering and
filtering on the data set. Different sampling techniques like
stratified grid sampling of the sample data points may prove
sufficient instead of applying DBSCAN to the entire t-SNE
output to remove noisy data. Our work lends itself to con-

PyTorch DDP vs Horovod

890455
I 1

» A T A T A T T (R T T i]
-9- DDP] W i L I b I e
HVD ==
Vid JE
.
./ + alieduce ayert.0bn2 weight (pld 961)
J —
1044 -
.
’, ALLREDUCE
e
7)) e /er1.0.conv2 weight (pid 963)
o P e —
0 i J
Q L S — -
=1 ./ NNNNNNNN e
I -
5 L O B
v 1034 L S RG]
B B e T = e
L
. T
,’ EEEEEEEE :_ALLREDUCE ~ ALLREDUCE
L
//
s B
R ——_—
2]
10 (c)
TTTT T L | b | T LI L B L T L=
i s TR W | (W e A 1 1
Num GPUs SRS L] L]

Fig. 8. (left) Data parallel scaling (effective batch size is linearly proportional to the number of GPUs) of PyTorch with built-in distributed data parallel (DDP)
library vs third-party Horovod library, both using NCCL communication backend. (right) (a) nvprof profiling of a typical step in PyTorch with Horovod; (b)
Horovod timeline tracing of a step; (c) nvprof profiling of a typical step in PyTorch with DDP.

version into an interactive tool to visualize and investigate
the working of a model using such a methodology which
can facilitate reproducibility and model transparency. We find
that our technique works with a pre-trained ResNet-101 used
as a feature extractor as well, instead of training a model
from scratch. We intend to expand this work using other pre-
trained networks in the future. These techniques are likely to
be particularly effective in a variety of domain areas such as
anomaly detection, data compression, and data filtering.

ACKNOWLEDGMENT

This research was sponsored by and used resources of the
Oak Ridge Leadership Computing Facility (OLCF), which is
a DOE Office of Science User Facility and the Compute and
Data Environment for Science (CADES) at the Oak Ridge
National Laboratory supported by the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

REFERENCES

[1] J. Yin et al. “Strategies to Deploy and Scale Deep
Learning on the Summit Supercomputer”. In: 2019
IEEE/ACM Third Workshop on Deep Learning on Su-
percomputers (DLS). 2019, pp. 84-94.

[2] S. McCandlish et al. An Empirical Model of Large-
Batch Training. 2018. eprint: arXiv:1812.06162.

[3] S. Smith et al. Don’t Decay the Learning Rate, Increase
the Batch Size. 2017. eprint: arXiv:1711.00489.

[4] E. Hoffer et al. “Train longer, generalize better: closing
the generalization gap in large batch training of neural
networks”. In: (2017). eprint: arXiv:1705.08741.

[5] H. Li et al. Visualizing the Loss Landscape of Neural
Nets. URL: https : // papers . nips . cc / paper / 7875 -
visualizing-the-loss-landscape-of-neural-nets.pdf.

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

Alex Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. Apr. 2009. URL: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

A. Sergeev et al. “Horovod: fast and easy distributed
deep learning in TensorFlow”. In: arXiv preprint
arXiv:1802.05799 (2018).

M. Jogin et al. “Feature Extraction using Convolution
Neural Networks (CNN) and Deep Learning”. In: 2018
3rd IEEE International Conference on Recent Trends
in Electronics, Information Communication Technology
(RTEICT). 2018, pp. 2319-2323.

L. Maaten et al. Visualizing Data using t-SNE. URL:
https://lvdmaaten. github.io/publications/papers/JMLR _
2008.pdf.

M. Ester et al. A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise.
1996. URL: https://www.aaai.org/Papers/KDD/1996/
KDD96-037.pdf.

T. He et al. From Data Quality to Model Quality:
an Exploratory Study on Deep Learning. 2019. eprint:
arXiv:1906.11882.

X. Jia et al. Highly Scalable Deep Learning Training
System with Mixed-Precision: Training ImageNet in
Four Minutes. 2018. eprint: arXiv:1807.11205.

Y. You et al. Large Batch Training of Convolutional
Networks. 2017. eprint: arXiv:1708.03888.

S. Gahlot et al. Data optimal large batch distributed
training of Deep Neural Networks. Version 1.0. Oct.
2020. URL: https://github.com/ghltshubh/dolbdtDNN.
D. Masters et al. Revisiting Small Batch Training for
Deep Neural Networks. 2018. eprint: arXiv:1804.07612.

