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ABSTRACT

Machine learning (ML) techniques are being used to detect increas-
ing amounts of malware and variants. Despite successful applica-
tions of ML, we hypothesize that the full potential of ML is not
realized in malware analysis (MA) due to a semantic gap between
the ML and MA communities. Due in part to the available data, ML
has primarily focused on detection whereas MA is also interested
in identifying behaviors. We review existing open-source malware
datasets used in ML and find a lack of behavioral information that
could facilitate stronger impact by ML in MA. As a first step in
bridging this gap, we label existing data with behavioral informa-
tion using open-source MA reports—1) altering the analysis from
identifying malware to identifying behaviors, 2) aligning ML better
with MA, and 3) allowing ML models to generalize to novel malware
in a zero/few-shot learning manner. We classify the behavior of a
malware family not seen during training using transfer learning
from a state-of-the-art model for malware family classification and
achieve 57% - 84% accuracy on behavioral identification but fail to
outperform a majority class predictor. This highlights opportunities
for improvement on this task related to the data representation, the
need for malware specific ML techniques, and a larger training set
of malware samples labeled with behavior.
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1 THE PROMISE OF MACHINE LEARNING

Recently, machine learning (ML) performance has improved signi-
ficantly—particularly in deep learning (DL), a class of ML algorithms
that uses multiple layers in a neural network. State-of-the-art per-
formance has been achieved in computer vision [29, 77], medical
diagnosis [20], machine translation [54, 79], and game play [43, 66]
and creates hype for similar success in different applications includ-
ing malware detection. ML and DL in malware detection promises
to reduce manual labor by orders of magnitude, reduce errors, work
at scales and speeds previously unobtainable, and detect novel mal-
ware [23, 55]. As such, many anti-virus (AV) companies are turning
to ML and DL to improve malware detection and mitigation.
Despite some success of ML in MA, we observe that the results
achieved in other domains have not yet been obtained in MA. We
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hypothesize that a semantic gap exists between the ML and mal-
ware analysis (MA) communities. MA typically identifies malware
based on observed malicious or unintended behaviors requiring
manual examination but has yet to establish meaningful behavioral
categories and create realistic and challenging benchmark datasets;
ML blithely uses easy benchmark datasets and focuses merely on
malware classification and is easily satisfied by its artificial success.
We believe that aligning the ML and MA communities will facilitate
the development of ML and data processing techniques specific for
MA and improve its performance in identifying novel malware.

Representative datasets are especially important to ML, yet data
collection is problematic in MA as many training sets are inherently
biased, leading to model over-performance [13, 47] and samples
with identical functionality can be mislabeled because of obfusca-
tion techniques [30, 80]. However, the ML culture generally em-
phasizes demonstrated performance improvements on benchmark
datasets [67] which has driven significant improvements but is com-
pletely dependent on an appropriate dataset. We suggest that ML-
based MA can be improved by aligning the data used by ML with the
goals of the MA community—specifically incorporating behavioral
information. With the end goal of aligning the two communities
and improving the identification of novel malware, we 1) provide
ML perspectives that have led to its success in other domains that
may be lacking in MA, 2) survey current datasets that are used by
ML for malware detection, 3) develop a method for providing behav-
ioral annotations aligned with the MITRE ATT&CK® Matrix [76],
4) annotate the Microsoft Malware Classification Challenge dataset
[60] with behaviors and 5) show that behavioral identification is
a more difficult and interesting problem for ML than generally
realized. Initial results suggest that behavioral classification can
generalize to novel samples from malware families not included in
training and that MA-specific ML techniques are needed.

Prior work has looked at behavioral-based features [13, 21, 86]
and labels [19] for ML in MA and is discussed throughout the paper.
In the following Section, we first review some preliminaries for ML
and MA including the dependence of ML on the data and its ability
to generalize. In Section 3 we review a use case highlighting the
semantic gap between ML and MA. Sections 4 and 5 analyze the
datasets and features that are used. We introduce our behavioral
labeling process and present initial results in Section 6. Section 7
presents our conclusions and future work.

2 PRELIMINARIES

In this section, we provide a brief overview of ML, caveats for its
success, and a brief overview of program analysis (PA) techniques
used by MA teams to identify the behaviors in an executable.

2.1 Machine Learning Background

We focus on supervised ML that learns by example from labeled
data points. We denote the inputs as X and the labels or outputs
as Y. Observed variables are represented in lower-case. Therefore,
the i'" observation of X is written as x; which can be a vector or
a scalar. Following Friedman et al. [22] to more formally describe
supervised ML, let

Y= f(x)+e (1)

Smith and Johnson, et al.

describe the data where the noise € has E(¢) = 0 independent of
X. The goal of an ML algorithm, then, is to find an approximation
f (x) to f(x) that preserves the predictive relationship between X
and Y. The approximation f(X) is learned from a training set 7~ of
N observed input-output pairs (x;,y;), i = 1,...,N.

An ML algorithm modifies the input-output relationship f (i)
in response to the difference between the prediction f(x;) and
the observation y;. Each learning algorithm has an associated set
of parameters 6 that can be modified to alter f (x) and many are
maximum likelihood estimators assuming that the most likely values
for 6 provide the largest probability of observing Y given X.

The values of § are found by minimizing a loss function L that
measures the “goodness” of the model fit as a function of 6. For
example, one loss function minimizes the residual sum-of-squares
(RSS) or, another, the cross-entropy (CE) loss when Y is a vector
of K possible classes. Minimizing the loss function on the training
data minimizes training error, however, the goal is to minimize error
on unobserved data points (the test or generalization error). The
expected generalization error can be decomposed as:

Err(x) = E[(Y - f(x))*]
= (E[f ()] - f())? + E[(f(x) = E[f @)D + 0 (2)

which is a sum, respectively, of the bias, variance, and the irre-
ducible error. The irreducible error (o2) represents the inherent
noise in the data (e in Equation 1)—no matter how good the model
is, there will be some amount of error. The bias is the difference be-
tween the average model prediction and the actual value. High bias
refers to models that focus less on the training data and possibly
oversimplifies the model. High variance models, on the other hand,
focus more on the training data and possibly result in overly com-
plex models. As the complexity of a model increases, the training
error tends to decrease. The performance on training data is usually
not a good indicator of how the model will generalize or how well
it will perform on new data points. Thus, a trade-off between bias
and variance is needed to achieve a model that generalizes the best
to test data. For more details, see Friedman et al. [22].

There is an explicit dependence between training data, f (x), and
the generalization error. Gathering, cleaning, and processing data
requires large amounts of effort. An observed data point x; needs to
be represented in a format that an ML model can operate on. Most
ML algorithms operate on vector representations. However, many
interesting problems are not easily represented as vectors without
discarding significant amounts of information. If the representa-
tion of the data does not contain the information required for the
question that is being asked (e.g. is the behavior of this executable
benign or malicious?) then this falls within the irreducible error
(02 from Equation 2) that cannot be overcome. Additionally, an ML
algorithm optimizes the loss on the labels and, therefore, the label
needs to be aligned with the application. Better representations and
labels of the phenomena can, thus, reduce the irreducible error.

2.2 Overlooked Caveats of ML Successes

ML has been successfully applied in several domains that is often
built on decades of previous research and understanding of a given
domain. For example, the success of convolutional neural networks
(CNNss) [39] builds on decades of research in signal processing and
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data representation. The convolution is a mathematical operator
that expresses the overlap between functions and can be thought of
as blending one function with another. The convolutions in CNNs,
are a codification of convolutions where one function is based on
the data instead of being explicitly defined. One key reason for the
success of convolutions is their translational invariance which is
inherently important in object recognition where an object may be
anywhere in the image. An analogous operator does not yet exist
for binary executable analysis.

Success of ML in other domains has also been enabled by large
amounts of labeled, relevant datasets. Li revolutionized computer
vision and object detection by providing labels for relevant images
[17]. Corresponding datasets do not yet exist for malware detection.
Further, ML models do not always learn the intended concepts. For
example, CNNs are biased towards learning texture rather than
shapes and objects [25, 72]. This can make them susceptible to
adversarial attacks and brittle to noise [65].

Additionally, the data in MA is significantly different from other
domains in that it lacks proximity relationships, continuity, and
ordinality that are assumed by many ML algorithms. For example,
pixel values of 123 and 122 are close in value and neighboring pix-
els have an assumed proximal relationship. Code blocks can jump
to various locations in a binary and values next to each other in
numerical space can have significantly different meanings. Addi-
tionally, in real-world systems, goodware significantly outnumbers
malware—less than 1% of all executables were reported as malware
[7]. This class imbalance has been shown to exacerbate other is-
sues in ML algorithms [74]. The combination of these issues makes
applying ML to MA difficult.

2.3 Program Analysis

Program analysis (PA) consists of several processes that are used to
reason about the behavior of a computer program and are leveraged
in MA. PA is ultimately interested in program optimization and
correctness. We highlight a subset of areas related to extracting
features that could be used as input to ML algorithms.

In PA, a distinction is made between the syntax and the semantics
of a program [28]. For programs, syntax is concerned with the form
of expressions that are allowed (i.e. the sequences of symbols that
are accepted by a compiler or interpreter). Semantics describe the
effect of executing syntactically correct expressions (behavior). The
semantics of a program require a defined syntax, at least at an
abstract level. Identifying syntax is much easier than semantics. As
shown in Section 2.1, an ML model depends on training data. If
training data does not relate to behaviors, then expecting an ML
model to learn them is unreasonable. Generally, extracting syntactic
features is significantly simpler than extracting semantic features.

2.3.1 Static Analysis Techniques. In static analysis, a program is
analyzed in a non-runtime environment. The analysis is generally
performed on a version of the source code, byte code, or application
binaries. Static analysis is used frequently for optimization, such
as dead code elimination, or for verification such as identifying
potentially vulnerable code and run-time errors. Generally, static
analysis approximates all possible executions of a program through
abstract interpretation or data-flow analysis. One challenge for
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static analysis is that behavior is limited to what happens internal
to the program and the environment is not analyzed.

Several static analyses techniques capture semantic information.
However, many datasets used for ML favor syntactic features that
are easier to capture. Data flow analysis (DFA) is a frequently used
technique that collects information about the possible states at var-
ious points in a program [71]. DFA constructs a control flow graph
(CFG) that represents the program. Each node in the CFG often
represents a basic block or a sequence of consecutive instructions
where control can only enter at the beginning of the block and
leaves at the end of the block. Directed edges in the graph represent
jumps between one basic block to another. Kildall’s method is a
common approach to performing DFA where an equation for each
node is derived and each equation in the graph is iteratively solved,
propagating inputs and outputs until the system converges [37].
A CFG captures significant semantic information; however, this
information is not in a form ML can easily digest, nor is there any
obvious means to transform it without significant semantic loss.

Abstract interpretation [15, 16] is a theoretical framework to
formalize the approximation of computing abstract semantics. Here
semantics refer to a mathematical characterization of possible be-
havior of a program. The most precise semantics describe accurately
the actual execution of a program and are called concrete semantics.
Small-step, or structural oriented, semantics [51] describe a pro-
gram in terms of the behaviors of its basic operations. The behavior
of a program is a current state (program point and the environ-
ment) given a starting state and series of operations. For example,
consider the simple code below.

1: n=0

2: while n < 500 do
3: n = n+1;

4: end

5: exit

Analyzing the program would yield:

<1L,n=>Q>><2,n=>0>><3,n=>0>><4n=>1>>

<2,n=>1>><3n=>1>-<4n=2>---<5n= 500>

Operational semantics, such as small-step semantics, combine logi-
cal conclusions about program syntax in order to derive semantic
meaning. Assuming the interpretation of syntax is correct, this also
allows for the construction of proofs about program behavior.

Big-step, or natural, semantics [33], like small-step semantics,
define basic components to describe the semantics of a program.
Rather than using the basic operations like small-step, big-step
analytics defines the semantics of functions. More pertinent to
malware classification, both are techniques that derive semantic
meaning from a program and could be looked to as inspiration
for features. It is worth noting that both of these techniques limit
behavior to what happens internal to a program or segment. They
do not take into account the effects on the full environment as this
is inherently intractable and represents a key difficulty in modeling
malware for ML and MA.

Another key static analysis approach over programs is symbolic
execution. Symbolic execution techniques build a mathematical rep-
resentation of a program based on the input and output of various
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subroutines or functional blocks [9, 42]. In this representation, in-
dependent variables represent key input values. Constraint solvers,
for example, can then solve for the variables, identifying what kinds
of inputs are required for a particular output state [31, 61]. From a
vulnerability analysis perspective, this can allow analysts to iden-
tify input that can potentially lead to system failure states, which
may be exploitable. Symbolic execution techniques suffer from state
explosion proportional to the size and complexity of a given pro-
gram [38]. Other static analysis techniques provide disassembly
and intermediate representations (from binary to machine code).
However, care needs to be taken to preserve semantic information.

2.3.2  Dynamic Analysis Techniques. Dynamic analysis executes a
program and precisely analyzes a single or limited number of execu-
tions of a program. The coverage of dynamic analysis is dependent
on the test inputs, which for malware analysis, can be variants of
the operating environment. Often, a subset of the interactions with
the underlying operating system are analyzed such as system calls,
or memory reads and writes. Dynamic analysis is often used to
ensure program correctness and find errors in code [44].

Most dynamic analysis techniques use instrumentation to insert
code into a program to collect run-time information. The instru-
mentation will vary based on the type information that is desired
and the type of code that is available (e.g. source code, static binary,
and dynamic binary). Most tools track function calls (including sys-
tem calls), capture the input parameters, track application threads,
intercept signals, and instrument a process tree. The output from
dynamic analyses has often been heralded by ML practitioners for
modeling behavior as it captured observed effects on the environ-
ment. However, because of a lack of context and the challenges
outlined previously, the representations that are suitable for ML
often lose the semantic information.

3 MOTIVATING CASE STUDIES

To help motivate the semantic gap between ML and MA , we walk
through a case of using ML to identify malware persistence in reg-
istry keys—highlighting the difficulty in generating an appropriate
dataset and extrapolating results to real-world scenarios.

Briefly, the registry is a hierarchical key-value database that
stores configurations, program settings, and user profiles. The reg-
istry is capable of storing commands to execute when the system
is loaded and is commonly used for maintaining persistence on the
Windows operating system [14]. In addition to system software,
malware takes advantage of the the registry to ensure that it is
loaded as needed. As an example, a key can have the format:

\HKEY\_LOCAL\_MACHINE\System\...\...\ImagePath
and a value that can take multiple formats such as:
C:\Windows\System32\svchost.exe -k netsvcs

The example represents a path to an executable, but the values
are capable of storing many complex data types (e.g., binary data,
scripts, etc.). Thus, even with this relatively simple example, repre-
senting this data in a format suitable for ML is non-trivial.

3.1 Data Collection & Parsing

As with most use cases, collecting data is not challenging, but ob-
taining labels and properly representing the data is. Registry data

Smith and Johnson, et al.

was collected from Windows machines across a corporate network
for two years, resulting in approximately 20 million (host, registry
key, timestamp) tuples, with roughly 136,000 unique registry en-
tries. Registry data was collected from executing publicly available
malware in a sandbox environment producing 200 registry entries.

Despite capturing effects on the environment, the raw registry
data is not suitable for ML algorithms due its variability. As there
are a finite number of keys, they are represented as a 1-of-N en-
coding. The value portion is more complex and describes what
is being executed. Ideally, the value consists of a path and a file
that can be parsed into its relative components. However, in some
cases one program will launch another such as when services are
launched using svchost. exe. For these situations, a parser that
found the launching program (e.g., svchost) as well as the pro-
gram that is being launched. Each launching program is parsed
according to the expected syntax (e.g., svchost should have a -k
flag), and when found, these launching programs constitute another
categorical variable. Additionally, different file types exist which
are represented as categorical variables per file type including any
associated options (e.g., command-line flags).

After the aforementioned parsing, the specific folders in a given
path are used as terms in a traditional bag-of-words model. The re-
sulting data is high-dimensional (over 12,000 terms) and extremely
sparse with few unique observations (i.e., the number of unique
rows is close to the number of columns). Principal Component
Analysis (PCA) was performed to reduce the dimensionality while
preserving as much information about the original space as possible.
Several assumptions and trade-offs were made to produce a format
suitable for ML which discarded some information.

3.2 Experimental Analysis and Bias

Labels are needed to identify which registry keys are associated
with malicious or benign activity. Initially, any key that occured on
a large number of hosts was labeled benign and those that were
modified by the malware as malicious. Experimentation with this
setup resulted in a cross-validated area-under-the-curve (AUC)
score of 0.99. Performance this high should suggest that the ML
problem is too simple and thus will not be practically useful. Upon
closer inspection, the malicious examples came from specific hosts
and identifying the malware labels was a simple process. Reg-
istry keys that occur on a large number of systems tend to be
associated with programs and drivers in the system space (e.g., in
C:\Windows\system32). However, the majority of the malicious
keys are associated with the user and program space. A simple
weak indicator that looks for absence of the keywords “windows”,
“system”, or “program” to determine maliciousness provides an AUC
of 0.85. Thus, the model inadvertently distinguishes system space
keys versus other keys and is not likely to generalize well.

Only labeling keys modified by malware as malicious and all
others as benign results in an AUC of 0.96 for ML and an AUC of
0.53 for the weak indicator—not significantly better than random.
This result is promising as the gap between ML and a simple indi-
cator increased significantly. However, this correction is likely still
optimistic. Cross-validation tends to be optimistic in general, due to
the fact the errors are not independent. Also, this data is not likely
to contain all possible examples of malware that uses legitimate
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software registry for persistence. Creating a generalizing principle
beyond a signature is challenging. Another confounding factor is
that malware can execute behavior that is not malicious to avoid
detection, and, thus, make it difficult to derive ground-truth labels.

3.3 Other Examples

This paper is not the first to recognize the gap between the research
and actual deployments. Sommer and Paxson [75] point out the
discrepancies in network intrusion detection. They observe that
the task of intrusion detection is fundamentally different from
other applications, making it more challenging. They identify six
key challenges: 1) ML is better for finding similarities rather than
differences, 2) very high cost of classification errors, 3) a semantic
gap between detection results and their operational interpretation,
4) enormous variability in what is “normal”, 5) difficulties in sound
evaluation of the results, and 6) operating in an adversarial setting.
In the context of detecting malware, other work noted discrepancies
particularly with respect to the precision of malware—indicating a
large jump in false negatives when deployed in real-world settings
stemming from the difference in the proportion of malware and the
difficulty on modeling “normal” in executables [73].

4 CURRENT DATASETS

In this section, we briefly discuss the importance of benchmark
datasets historically in ML research and the challenges in curating
a benchmark dataset for malware, and we review existing datasets.
Despite several attempts, a benchmark dataset for malware classi-
fication has yet to be widely adopted and have a high impact for
ML-based malware classification.

4.1 The Utility of Benchmark Datasets

The progress of any research field depends on reproducible com-
parisons between methods to quantify progress on a given task.
For ML, benchmark datasets facilitate comparisons between learn-
ing algorithms. In addition, benchmark datasets drive ML success
and guide research in several application areas such as object de-
tection [18], facial recognition [50], handwriting recognition [40],
recommender systems [27], and question and answer systems [57].

Benchmark datasets facilitate research that would not otherwise
be possible. A benchmark dataset dictates several important char-
acteristics of the research that uses it. First, it determines which
features are used based on data representation. Second, it deter-
mines the impact of ML models developed using the data. If the
dataset misrepresents the real-world settings or is ill-suited for the
task, the ML model will perform poorly despite performing well on
the benchmark dataset.

4.2 Challenges in Curating a Malware Dataset

Dynamic Environment. Malware classification is a dynamic problem
in which the target is constantly changing and evolving. In ML
parlance, this is concept drift where the distribution of the target
changes over time from what was used for training [24]. In cases
with concept drift, performance often degrades and has been shown
to be significant in malware detection [36]. Additionally, malware
authors intentionally alter malware to avoid detection using several
obfuscation techniques including polymorphic code and garbage
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code insertion. In many other domains, the attempt to deceive is not
as prevalent. Malware authors can purposefully alter their malware
to subvert an ML model trained on a given dataset.

Releasing Data. Many AV companies hold their collection of mal-
ware samples as proprietary. As mentioned above, malware authors
could also use this information to thwart existing architectures built
on this data—risking their clients’ systems. Another consideration
is that each collection service may be biased to certain demograph-
ics, location, network infrastructure, political ties, etc. that may
attract certain types of attacks.

Feature Representation. Distributing live malware samples is a
security risk, especially for those not accustomed to handling mal-
ware. As a result, most recent datasets first extract predetermined
features from a set of malware examples limiting the representation.

Obtaining Labels. Many of the current datasts use tools like Virus-
Total [4], which provide the output from multiple antivirus tools,
to create labels. Often only samples that are identified as malware
by a majority of the tools are labeled as malware and others are
discarded providing a biased sample that uses the most popular
examples and is not representative of the data that will be encoun-
tered in real-world deployments. Using the most popular malware
and goodware examples can create easily separable training data
and overly optimistic performance expectations [41, 48]. Several
works have proposed methods for improving the labeling and not
discarding as many of the “unpopular” samples [35, 68].

4.3 Review of Datasets

There are currently several proposed repositories for ML-based mal-
ware detection that either identify malware families or discriminate
malware from goodware; these are summarized in Table 1.

4.3.1 Live Malware Repositories. There are several repositories
containing live malware—posing a threat to inadvertently infecting
one’s system and providing malicious software to adversaries. How-
ever, the malware samples provide a valuable resource enabling MA
and research. VX (Virus eXchange) heaven [5], with the mantra:
"Viruses don’t harm, ignorance does!" seeks to provide information
about computer viruses including articles, source code, malware
samples, and books to help educate whomever is interested. Several
similar repositories exist including theZoo (a.k.a. the malware DB)
[2] and Virus Share [3] for free or Virus Total [4] which is available
for a fee and also contains benign samples.

Ideally, a researcher has access to the raw data. Even with access
to the entire malware sample, as discussed previously, getting the
samples into a format suitable for ML is challenging. Often only
simple features are extracted such as metadata from the PE header,
imported DLLs, and byte counts (more details on extracted features
are given in Section 5). Using simple features resulted in high de-
tection rates (98.8%) [81] leaving little room for improvement. With
live malware repositories, studies are difficult to compare as each
selects different subsets of malware samples to analyze and there
is no common base publication to trace attribution. However, the
amount of malware samples is impressive. On Virus Share, there
over 34 million samples as of this writing.

4.3.2 Mallmg. The Mallmg dataset [45] was motivated by the suc-
cess of deep learning (DL) in image processing. In Mallmg, binary
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Table 1: Summary of malware datasets used for ML

Dataset Year  Cite Representations # Samples Labels Labeling Max Acc
Highly Cited
VX Heaven [5] 2010 ? Live executables Varies Varies Curated N/A!
VirusShare [3] 2011 >300 Live executables Varies Varies Curated N/A!
Mallmg [45] 2011 417 Gray-scale images 9,458 25 Families MSSE 99.80%
MS Malware Classification [60] 2015 76 Disassembly and hexadecimal 10,868 9 Families MSSE 99.97%
EMBER [10] 2017 46 Parsed and histogram counts 1,100,000 Good, Bad, ? VirusTotal 99.90%
MalRec [69] 2018 11  System calls, memory contents? 66,301 1,270 families VirusTotal? N/A!
Less Cited
Malware Training Sets [59] 2016 2 Counts from analysis reports 4764 4 families Curated -
Mal-API-2019 [12] 2019 System call traces 7,107 8 families VirusTotal =
Meraz’18 Kaggle [6] 2018 ~1 Parsed features 88,347 Good v Bad Curated 91.40%*

1 There is no established dataset making comparisons between studies difficult.

2 Also provides full system replays of malware execution, however the authors note non-trivial efforts to get them to work on other systems.

3 Uses AVClass [68] which leverages VirusTotal.

4 Reported accuracy on the Kaggle challenge leader board.

Figure 1: Examples of malware represented as gray-scale im-
ages from a) Fakerean and b) Dontovo.A malware families.

values from an executable were converted to 8 bit unsigned integers,
organized into a 2-dimensional array and visualized as a gray-scale
image (Figure 1).

The authors observed that malware belonging to the same family
were visually similar in layout and texture. In their preliminary
analysis, the authors extracted texture features from the generated
gray-scale images using GIST [78]. On a dataset with 9,458 malware
samples from 25 different families, a 3-nearest neighbor classifier!
achieved 97.18% accuracy and 99.2% when variants of a malware
family were combined. Follow-up work achieved accuracy of 98.52%
when using a convolutional neural network [34] and 99.80% with
principal component analysis and a support vector machine [26].

4.3.3  MS Malware Classification. The Microsoft Malware Classi-
fication Challenge [60] was developed as a Kaggle competition to

1A classifier that predicts the majority class of the 3-closest examples

Table 2: Reported accuracy, precision, recall and F1-score on
the EMBER dataset [53].

Model Accuracy Precision Recall F1

MalConv [55] 98.8% 99.7 97.9  98.8
GBDT [10] 97.5% 99.0 96.2 971
KNN 95.1% 955 94.6 95.1
DT 96.9% 97.1 96.7  96.9
RF 97.0% 98.6 953  96.9
SVM 96.1% 96.4 95.7 96.1
DNN 98.9% 99.7 98.1 98.9
Modified MalConv [53] 99.9% 99.7 100.0  99.9

classify malware samples into one of nine malware families. It was
released in 2015 and has since been used in several studies, being
cited more than 70 times at the time of this writing. The hexadec-
imal representation of the binary content without the PE header
as well as meta-information (function calls, op codes, strings, etc.)
from the IDA disassembler was provided for each malware sample.
Current reported performance on the dataset claims 99.70% [26]
and 99.97% accuracy [34] using image-based features.

4.3.4 EMBER. The Endgame Malware BEnchmark for Research
(EMBER) dataset [10] is a collection of extracted features from 1.1
million executables divided into 900k training and 200k test samples
and has emerged as one of the most popular datasets. EMBER
provides features that are consistent with previous work. and has
been used in several studies. The authors of EMBER achieved a
98.2% detection rate with a 1% false positive rate. This was further
improved to a 99.4% detection rate with an AUC value of 0.9997 [49].
Further, Vinayakumar et al. [53] modify a DL technique aimed
at malware detection (MalConv [55]) and achieve nearly perfect
performance.
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4.3.5 Malrec. Contrary to the other datasets, Malrec provides
system-wide traces of malware executions that can be replayed.
It is intended to address the danger of releasing live malware and
the limited amount of data that can be collected when running in
a sandbox. The replays capture the state of a system that is exe-
cuting malware and thus captures the behaviors of malware while
not releasing actual malware and provides the ability to retrospec-
tively extract features that were not considered relevant when the
malware was first executed. There are currently 66,301 malware
recordings collected over a two-year period. The major downside is
the very large size of the data (currently 1.3TB) and the complexity
in setting up the system to extract a dataset.

The authors extracted multiple datasets from the system-wide
recordings including bag-of-word counts for textual data in memory,
network activity, system call traces, and counts of data instruction
mnemonics. They examined a use case in which they extracted fea-
tures to use for ML. They created a word list of all words between
4 and 20 characters long from the English Wikipedia—resulting
4.4 million terms. They then monitored memory reads and writes
looking for byte sequences that matched words in their list. Terms
were removed that appeared in a baseline of running goodware
as well as frequent terms that appeared in more than 50% of the
samples and rare terms that appeared in less than 0.1% of the sam-
ples resulting in ~460,000 terms. The dimensionality was further
reduced to 2048 input features using PCA. DL on this data achieved
a median F1-score of 97.2% across all of the malware families.

Despite having system-wide information, the PCA summary was
sufficient for their dataset to achieve high accuracy. This presents
somewhat of a paradox in the claims of ML and what is observed
in deployed systems. Analyzing the memory contents in a bag-of-
words fashion loses context, and we argue, that it is akin to learning
a signature. We conclude that the ML model is able to quickly learn
an effective signature-based malware detection system.

4.3.6  Other Datasets. Other datasets have been created, often by
other security companies and hobbyists [6, 12, 59]. These datasets
have not been widely adopted nor is it apparent how much main-
tenance they receive. We include them here for completeness, but
they do not provide any new feature representations.

4.3.7 ML Perspectives. From an ML perspective, achieving such
high classification accuracy is somewhat concerning as there is
fear that the model has either overfit the training data (will have
high generalization error) or the training data is easily separable.
Thus, the dataset may not represent real world conditions well and
give unrealistic performance expectations. For EMBER, the authors
point out that the classes were easy to correctly classify and have
attempted to make the task more challenging [63] in addition to
other modifications [62]. The baseline on the updated data is 86.8%.
Unfortunately, there are few results on the updated dataset.

5 ANALYSIS OF DATASETS AND FEATURES

In this section, we examine which features contribute to the per-
formance of an ML model across the datasets. We find that 1) the
most useful features vary across datasets and 2) very few attempt
to extract semantic features and are careful to maintain semantic
information. We suggest that the ML models operate on patterns in
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the data not used by the MA community and that syntactic features
are useful for discriminating between existing malware classes sim-
ilar to how non-intuitive textures in images are useful for object
detection. Similar to object detection in images, the models should
not be expected to detect novel forms of malware based on their
behavior as there is a semantic gap between the data and the task.

Raman [58] examined which features are the most discrimina-
tive between malware samples from VX Heaven and software that
comes installed by default on Windows operating systems. They
were able to achieve a true positive rate of 98.6% with a false pos-
itive rate of 5.7% by only extracting seven features from the files.
Further examination revealed that the ML algorithm learned to
discriminate between Microsoft and non-Microsoft executables. As
the dataset does not represent the real-world problem well, it affects
the robustness of an ML model trained on that data. A high false
negative rate would be expected with a broader set of goodware.

Ahmadi et al. [8] extracted a large number of features that are
commonly used in ML models from the hexadecimal representation
and disassembled files from the Microsoft Malware Classification
Challenge dataset with the intent of identifying features that are
the most discriminative. The examined features include:

(1) byte counts (BYTE).

(2) the size of the hexadecimal representation and the address
of the first byte sequence (MD1).

(3) byte entropy (ENT).

(4) image representation using Haralick features (IMG1) and
Local Binary Patterns (IMG2).

(5) histogram of the length of strings extracted from the hexa-
decimal file (STR).

(6) the size of, number of line in the disassembled file (MD2).

(7) the frequency of a set of symbols in the disassembled file (-,
+51 L7 @) (SYM).

(8) the frequency of the occurrence of a subset of 93 of possible
operation codes in the disassembled file (OPC).

(9) the frequency of the use of registers (REG).

(10) the frequency of the use of the top 794 Window API calls
from a previous analysis of malware (API).

(11) characteristics of the sections in the binary (SEC).

(12) statistics around using db, dw, and dd instructions which are
used for setting byte, word, and double word and are used
to obfuscate API calls (DP).

(13) the frequency of 95 manually chosen keywords from the
disassembled code (MISC)

Table 3 shows the classification accuracy on the training set and
from using 5-fold cross-validation for each subset of extracted fea-
tures using gradient boosted decision trees. There are several fea-
ture groups that achieve over 99% accuracy including MISC which
counts the occurrence of a set of hand-selected keywords. Sur-
prisingly, MD1 and MD2 (i.e. file size) achieve about 85% and 76%
accuracy respectively (random is 11.11%). This highlights a concern
that there are features which may be discriminative but are an
artifact of the dataset and can easily be manipulated adversarially.
Oyama et al. [46] examine which features have the largest impact
on the EMBER dataset. EMBER contains several feature groups:
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Table 3: The accuracy on the training set and using 5-fold
cross-validation on the Microsoft Malware Classification
Challenge dataset [8].

Train 5-CV
Feature # Features Accuracy Accuracy
Hexadecimal file
ENT 203 99.87% 98.62%
BYTE 256 99.48% 98.08%
STR 116 98.77% 97.35%
IMG1 52 97.18% 95.50%
IMG2 108 97.36% 95.10%
MD1 2 85.47% 85.25%
Disassembled file
MISC 95 99.84% 99.17%
OPC 93 99.73% 99.07%
SEC 25 99.48% 98.99%
REG 26 99.32% 98.33%
DP 24 99.05% 98.11%
API 796 99.05% 98.43%
SYM 8 98.15% 96.84%
MD2 2 76.55% 75.62%

(1) General file information from the PE header such as virtual
size of the file, thread local storage, resources, as well as the
file size and number of symbols.

(2) Header information from the COFF header providing the
timestamp, the target machine, linker versions, and major
and minor image versions.

(3) Import functions obtained by parsing the address table.

(4) Exported functions.

(5) Section information including the name, size, entropy virtual
size and list of strings representing section characteristics.

(6) Byte histogram representing the counts of each byte value.

(7) Byte-entropy histogram approximating the joint distribution
of entropy and a given byte value.

(8) Simple statistics about printable strings that are at least
five characters long. Specifically providing information on
strings that begin with “C:\", “http://", “https://" or “HKEY ".

Table 4 shows the accuracy for each feature group. The imports,
which also have the largest number of features, has the highest
accuracy as 77.8%. Oyama et al. report that header, imports, section,
and histogram feature groups (together) achieve about 90% accuracy.
The remaining 2.7% comes from the other feature groups.

Other work makes similar observations on various datasets fur-
ther indicating a needed change in data representation:

e Count features (histograms) promotes overfitting and, com-
bined with the labels, produces overly optimistic results [56].

e PE headers are the most discriminative [85].

e On VX Heaven, PE-Miner [70] achieves a detection rate
greater than 99% only using structural information (PE and
section header information), DLLs and object files.

Smith and Johnson, et al.

Table 4: Reported accuracy and number of features for each
feature set in the EMBER dataset [46].

Feature set Number of features ~Accuracy
imports 1280 77.8
section 255 68.2
histogram 256 68.1
byte entropy 256 61.8
strings 104 61.4
general 10 56.0
header 62 52.9
exports 128 17.2
All 2,351 92.7

Despite the impressive results, none of the features capture be-
haviors as the data is not tailored to provide that information and
the ML task is to detect malware—not identify behaviors.

6 BEHAVIORAL-BASED DATASETS

As we have shown, most datasets have focused on the features
which do not contain behavioral information or it is lost when ex-
tracting features. As a first step to modeling behaviors, we take an
alternative approach and provide labels for the behavior expressed
in malware so the ML model can search for behavioral artifacts.
Extracting behavioral information from an executable is a chal-
lenging problem that is a current research area for MA. We offer
a process using threat reports to gather behavioral information
corresponding to malware families.

We propose that behaviors consist of a) a high-level intent and
b) low-level “primitives” that accomplish the behavior. A primitive
is a sequence of ordered or partially ordered (i.e., one step depends
on the previous step(s)) steps that must occur for the behavior to
be successful. It is possible that primitives may contain conditional
statements that are represented better by a directed graph than a
sequence. These primitives vary by representation, malware family,
or malware toolkit. They may also involve multiple systems (e.g.,
network and host). Thus, the feature representation is non-trivial.
Additionally, the high-level intent of the executable is often not in
the data Further, multiple primitives may exist that accomplish the
same behavior. For example, persistence is a common behavior for
malware. This same outcome can be achieved variously by copying
the malware to the startup folder or modifying the registry.

To label the behaviors, we leverage the MITRE Malware Behavior
Catalog (MBC) [1]. MBC supports MA mapping behavior onto the
MITRE ATT&CK Matrix [76]. ATT&CK documents common tactics,
techniques, and procedures that advanced persistent threats use
against Windows enterprise networks. The behaviors are organized
according to the objective of the malware such as “Anti-Behavioral
Analysis,” “Command and Control,” or “Persistence” Each objec-
tive contains behaviors and code characteristics (techniques) that
support that objective. For “Persistence” some of the techniques
include Application Shimming, DLL Search Order Hijacking, and
Scheduled Task. Each technique has an explanation for what it cov-
ers and some can belong to multiple objectives—the “Scheduled
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Figure 2: Classifying Behaviors for Unseen Families
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Task” technique could be under the “Execution,
“Privilege Escalation” objective.

We label the behaviors of a malware family using open-source
threat reports and map the reported behaviors to the “objectives”
and “techniques” outlined by MBC. In some cases, judgment has to
be made about which category is the most appropriate. We label
each family multiple times and use a peer review style to come to
conclusions. The behavioral labels for each family are then extrapo-
lated to individual examples. The current process is subjective and
time intensive, and errors can be made based on variations of a
malware family. Despite these limitations, the behavioral labeling
helps align the data to the desired task of identifying novel mal-
ware samples based on its behaviors. The labels would allow an ML
model to directly learn the behaviors that may be not be discernible
using only the family name. Future work includes the use of natural
language processing tools to help automate the process. As new
malware is analyzed, behaviors could be mapped into the MBC
directly, bypassing the need for this method.

We label the Microsoft Malware Classification Challenge dataset
which includes seven malware families, (Ramnit, Lollipop, Kelihos,
Vundo, Simda, Tracur, Gatak).2 The result of this process is a hi-
erarchical behavioral labeling of each malware family as shown
in Table 5. The compiled version is accessible at https://doi.org/
10.6084/m9.figshare.12240980. The hierarchical structure captures
both the high-level objective and employed technique(s) to meet
that objective. By providing this labeling, an ML model will learn
features that are associated with behaviors across all included mal-
ware families. By adjusting the objective of the ML algorithms,
better features and models can be developed that will improve the
deployment of ML-base malware detectors.

We are not the first to suggest the addition of behavioral labels;
however, our process provides richer behavioral annotation at the
cost of manual process and, as shown below, is a more challenging
problem. Semantic Malware Attribute Relevance Tagging (SMART)
[19] uses the output from anti-virus suites and parses keywords
from the output providing a richer potential set of technical feature
information than other approaches [86]. For example, the output
could be Win32.Virlock.Gen.8 or TR/Crypt.ZPACK.Gen and the
key words extracted are Virlock, and Crypt and ZPACK respec-
tively. This provides information that the malware is respectively
ransomware and packed. The keywords align with the objectives in

Persistence,” or

2Kelihos versions 1 and 3 were combined because the threat reports did not dis-
tinguish between versions and we dropped Obfuscator.ACY as it was a bucket for
obfuscated malware for which the family could not be determined.
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our process but do not provide consistent information on how the
behavior is implemented, which our method provides. They report
an accuracy of 95% on 11 possible tags. Our motives are similar
to those if SMART, but the finer grained labeling that our method
provides facilitates improved analysis and forces a ML algorithm to
learn distinguish behaviors that are important to MA. High-level
additional information was shown to improve the performance of
an ML model [64]. We anticipate similar improved results as well
as adjustments in follow-on studies that focus on behaviors.

6.1 Experiments on Behavioral Labels

We examine the ability of ML to generalize to novel malware on
two initial behavior classifiers trained on the behavioral annota-
tions using a binary image representation of the malware. As a
malware family can have a combination of behaviors, we treat the
problem as a mutli-label classification problem and use a binary
cross-entropy loss to encode this multi-label objective. Behavioral
labels are more consistent across malware families, allowing the
identification of behavior in novel malware samples. In the fol-
lowing experiments, we hold out one family, train the models on
the remaining malware families, and evaluate performance on the
held-out class. This allowed us to test the model’s ability to reason
about behaviors for a malware family it hadn’t seen before. We
compare the performance of the ML models with a simple majority
class predictor that predicts a behavior is present if it was present
in the majority of the training samples.

We establish a baseline model with a simple convolutional archi-
tecture used for image processing based on [52]. Using the input
size of that architecture, we selected the first 1024 bytes from our
malware samples as a (32,32) black and white image. This is a lim-
ited snapshot of malware but we saw accuracies above random
chance when evaluating the model on family classification.

To develop a more robust model for predicting behaviors from
malware binaries, we used the MalConv architecture described by
Raff in [55] and based on the code and model pre-trained on the
EMBER dataset described in [10]. For consistency with the baseline
model, we used the first megabyte of the malware sample repre-
sented as a flattened malware binary image as input. Additionally,
we replaced the final fully connected layer to provide outputs for
each of our behaviors, changing the output size to 56. This allowed
us to fine-tune the model to evaluate the ability of transfer learn-
ing to classify malware behaviors based on features extracted for
malware detection.

In Figure 2, we present the average accuracy across all behaviors
for each variant of the experiment. Our transfer learning approach
(MalConv)? outperforms our baseline model but the Majority Class
classifier achieves better performance than both of them. This high-
lights the challenge ML faces when classifying behaviors for MA
and the work that still needs to be performed. Since all of our test
samples are from the same family, (i.e. labeled with the same be-
haviors), the perfect classifier would predict the same labels for
each sample. If we had more families and could hold out multiple
families for evaluating generlizability, then a naive classifier might
not be as successful.

3See Al Kadri et al. [32] for a more focused approach of applying transfer learning to
MalConv for predicting malware families.
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Table 5: Malware Behavior Label Example for Microsoft Malware Classification Challenge

Objective: Collection Credential Access ‘ Defense Evasion
Technique: Local Man in the Steal Web  Credential in ~ Credentials Disable  Process
System  Browser | Hooking  Session = Web Browser in Files Masquerading Sec Tools Injection
Gatak X - X - - - X - X
Ramnit X X X X X - - X X
Lollipop X - - - - - - - -
Kelihos X - - - - - - - -
Vundo X - - - - X X X X
Simda X - - - - - X X -
Tracur & = = ] = = A = =

Further, we examined the correlation of extracted features with
the behavioral annotations. We used the features that were used by
the winning team of the 2015 Kaggle Microsoft Malware Classifi-
cation Challenge [82] (7600 features in total). Pearson correlations
were calculated between the extracted features and the behaviors.
Only 70 of the features had correlation p > 0.7 with any behavior.
64 of the 70 features that are strongly correlated with a behavior are
4-gram byte counts. Raff et al. concluded that n-byte grams were
most often picking up string features [56]. One of the behaviors
with a strong correlation with byte-grams is “rootkit”, which often
inserts malicious code into commonly used processes such as DLLs
which are often in disassembled string information and are one
type of information in the 4-gram byte counts that could be corre-
lated with behaviors. The behavior “access credentials” has a strong
correlation with the instruction used to shift the bits in the register
or memory, and is often used to encode or decode information.

The initial results presented here are not fully optimized but high-
light a semantic gap between ML and MA based on the data used for
analyses. There are several aspects that could be examined includ-
ing balancing the behaviors, data generation, and hyper-parameter
tuning. The results suggest that generalized behavior classification
may be a more difficult problem than classifying malware families
and highlight the need for a dataset with behavioral labels and that
simply using techniques that work well in other domains does not
directly transfer to behavioral identification.

7 CONCLUSIONS

In this paper, we reviewed the body of research on providing
datasets to train ML models for the classification of malware. We
suggest that current feature extraction and current ML techniques
optimized for signal processing are inadequate for malware be-
havior detection. As ML is being used by an increasing number of
AV companies, it is important that the lessons learned from the
successful development of ML in other areas is also used in MA.
This is accomplished through building on a strong foundation of
the application domain. We believe that bridging the ML and MA
communities will align the questions that are being asked to how
they are answered. We have shown that this misalignment in the
ML domain stems from a semantic gap in the available data and how
that data is represented. While both communities seek to identify
malware, the MA community uses semantic parsing techniques
to try to understand what the program is doing and, based on the
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behavior, a decision can be made to determine if the program is
malware or goodware. The ML community has primarily focused
on determining the intent of a program to classify malware. For ML
to make a larger impact in deployed settings, we advocate for 1)
an increased collaboration between the two communities, 2) more
behavior-based features in data sets and the inclusion of samples
that are not clear cut goodware or malware, and the inclusion of
behavioral information, 3) modifying the task of determining intent
to identifying behaviors, and 4) the development of a benchmark
dataset that more closely aligns with problems encountered by
the MA community. Benchmark datasets have a history of driving
significant improvements in ML in a given application area (i.e.
computer vision) and an appropriate one could help drive the ML-
based malware classification. As a first step, we proposed a method
for annotating datasets with behavioral information and provided
behavioral annotations for the Microsoft Microsoft Malware Classi-
fication Challenge dataset.

As new ML and DL methods are developed, some may have
more applicability outside of simply classifying malware. Attention
[11, 83] was introduced as a method to help a DL method focus on
the most pertinent portions of the input. In the MA community,
often a piece of software needs to be partially reverse engineered
to understand the behavior of the software. Attention allows for an
ML model to learn which portions of an executable are the most
pertinent to resulting classification [84]. Augmented with the be-
havioral annotations, attention would also indicate which portions
of an executable are the most pertinent to that behavior. This would
result in significant decreases in analyst time and potentially lead
to improved program understanding.

ACKNOWLEDGMENTS

This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solu-
tions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.
SAND2020-4695 C

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

1150



1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Mind the Gap: On Bridging the Semantic Gap between Machine Learning and Malware Analysis

REFERENCES

(1]

& =

[9

=

[10

[11]

[12]

[13

[14]

[15

[16]

[17]

(18]

[19

[20]

[21]

[22]

[23]

[24]

[25

[26]

[n.d.]. Malware Behavior Catalog.
markdown

[n.d.]. theZoo - A live malware repository. https://thezoo.morirt.com/

[n.d.]. VirusShare.com - Because Sharing is Caring. https://virusshare.com/
[n.d.]. VirusTotal. https://www.virustotal.com

[n.d.]. VX Heaven Virus Collection. http://vxheaven.org/

2018. Malware detection — make your own malware security system, in
association with meraz’18 malware security partner Max Secure Software.
https://www.kaggle.com/c/malware-detection.

2019. 2019 WEBROOT Threat Report. Technical Report. Webroot, Broomfield,
Colorado.

Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and
Giorgio Giacinto. 2016. Novel Feature Extraction, Selection and Fusion for Effec-
tive Malware Family Classification. In Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy (New Orleans, Louisiana, USA)
(CODASPY ’16). Association for Computing Machinery, New York, NY, USA,
1834AS194.

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven
compositional symbolic execution. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 367-381.

Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models. CoRR abs/1804.04637 (2018).
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
Ferhat Ozgiir Catak and Ahmet Faruk Yazi. 2019. A Benchmark API Call Dataset
for Windows PE Malware Classification. CoRR abs/1905.01999 (2019).

Lorenzo Cavallaro. 2019. When the Magic Wears Off: Flaws in ML for Security
Evaluations (and What to Do about It). (2019).

Microsoft Corporation. 2018. Structure of the Registry. https://docs.microsoft.
com/en-us/windows/win32/sysinfo/structure-of-the-registry ~ [Online; May
2018).

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (Los Angeles, California). Association for
Computing Machinery, New York, NY, USA, 2382A$252.

Patrick Cousot and Radhia Cousot. 2014. Abstract Interpretation: Past, Present
and Future. In Proceedings of the Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) (Vienna, Austria).
Association for Computing Machinery, New York, NY, USA, Article 2, 10 pages.
J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. 248-255.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In IEEE Computer Vision and Pattern
Recognition (CVPR).

Felipe N. Ducau, Ethan M. Rudd, Tad M. Heppner, Alex Long, and Konstantin
Berlin. 2019. SMART: Semantic Malware Attribute Relevance Tagging. CoRR
abs/1905.06262 (2019). arXiv:1905.06262 http://arxiv.org/abs/1905.06262
Bradley J. Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L. Kline.
2017. Machine Learning for Medical Imaging. RadioGraphics (Feb 2017). https:
//doi.org/10.1148/rg.2017160130

I Firdausi, C. lim, A. Erwin, and A. S. Nugroho. 2010. Analysis of Machine
learning Techniques Used in Behavior-Based Malware Detection. In 2010 Second
International Conference on Advances in Computing, Control, and Telecommunica-
tion Technologies. 201-203.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York.

Hisham Galal. 2015. Behavior-based features model for malware detection.
Journal of Computer Virology and Hacking Techniques (06 2015). https://doi.org/
10.1007/s11416-015-0244-0

Jodo Gama, Indrundefined Zliobaitundefined, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM
Comput. Surv. 46, 4, Article 44 (March 2014), 37 pages. https://doi.org/10.1145/
2523813

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness. In
Proceedings of the International Conference on Learning Representations (ICLR).
Lahouari Ghouti. 2020. Malware Classification Using Compact Image Features
and Multiclass Support Vector Machines. IET Information Security (01 2020).
https://doi.org/10.1049/iet-ifs.2019.0189

https://github.com/MBCProject/mbc-

11

[27]

(28]

[29]

(30]

[31]

(32]

[33

[34

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47

(48]

Conference’17, July 2017, Washington, DC, USA

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History
and Context. ACM Transactions on Interactive Intelligent Systems 5, 4, Article 19
(Dec. 2015), 19 pages.

Matthew Hennessy. 1990. The Semantics of Programming Languages: An Elemen-
tary Introduction Using Structural Operational Semantics. John Wiley & Sons, Inc.,
USA.

J. Hu, L. Shen, and G. Sun. 2018. Squeeze-and-Excitation Networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7132-7141.
Grégoire Jacob, Paolo Milani Comparetti, Matthias Neugschwandtner, Christo-
pher Kruegel, and Giovanni Vigna. 2012. A static, packer-agnostic filter to detect
similar malware samples. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 102-122.

Joxan Jaffar and J-L Lassez. 1987. Constraint logic programming. In Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. 111-119.

Mohamad Al Kadri, Mohamed Nassar, and Haidar Safa. 2019. Transfer learning
for malware multi-classification. In Proceedings of the 23rd International Database
Applications & Engineering Symposium. 1-7.

Gilles Kahn. 1987. Natural Semantics. In Proceedings of the 4th Annual Symposium
on Theoretical Aspects of Computer Science (STACS °87). Springer-Verlag, Berlin,
Heidelberg, 222A$39.

M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F. Igbal. 2018.
Malware Classification with Deep Convolutional Neural Networks. In 2018 9th
IFIP International Conference on New Technologies, Mobility and Security (NTMS).
1-5.

Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. 2015. Better
Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels.
In Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security
(Denver, Colorado, USA). Association for Computing Machinery, New York, NY,
USA, 453AS56.

W. P. Kegelmeyer, K. Chiang, and J. Ingram. 2013. Streaming Malware Clas-
sification in the Presence of Concept Drift and Class Imbalance. In 2013 12th
International Conference on Machine Learning and Applications, Vol. 2. 48-53.
Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (Boston, Massachusetts). Association for Computing
Machinery, New York, NY, USA, 1944A5206.

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. Acm Sigplan Notices 47, 6 (2012),
193-204.

S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back. 1997. Face recognition:
a convolutional neural-network approach. IEEE Transactions on Neural Networks
8,1 (1997), 98-113.

Yann LeCun, LAlon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document Recognition. In Proceedings of the IEEE,
Vol. 86. 2278-2324.

Peng Li, Limin Liu, Debin Gao, and Michael K. Reiter. 2010. On Challenges in
Evaluating Malware Clustering. In Recent Advances in Intrusion Detection, Somesh
Jha, Robin Sommer, and Christian Kreibich (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 238-255.

Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks. 2011. Directed
symbolic execution. In International Static Analysis Symposium. Springer, 95-111.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529-533.

Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software
Testing (3rd ed.). Wiley Publishing.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. Malware Images:
Visualization and Automatic Classification. In Proceedings of the 8th International
Symposium on Visualization for Cyber Security (Pittsburgh, Pennsylvania, USA)
(VizSec ’11). Association for Computing Machinery, New York, NY, USA, Article
4,7 pages. https://doi.org/10.1145/2016904.2016908

Y. Oyama, T. Miyashita, and H. Kokubo. 2019. Identifying Useful Features for
Malware Detection in the Ember Dataset. In 2019 Seventh International Symposium
on Computing and Networking Workshops (CANDARW). 360-366.

Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. {TESSERACT }: Eliminating experimental bias in mal-
ware classification across space and time. In 28th { USENIX} Security Symposium
({USENIX} Security 19). 729-746.

Roberto Perdisci and ManChon U. 2012. VAMO: Towards a Fully Automated
Malware Clustering Validity Analysis. In Proceedings of the 28th Annual Com-
puter Security Applications Conference (Orlando, Florida, USA) (ACSAC aAZ12).
Association for Computing Machinery, New York, NY, USA, 3294A$338.

1219
1220
1221
1222

1223

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276



1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

Conference’17, July 2017, Washington, DC, USA

[49] Huu-Danh Pham, Tuan Dinh Le, and Thanh Nguyen Vu. 2018. Static PE Malware
Detection Using Gradient Boosting Decision Trees Algorithm. In Future Data
and Security Engineering, Tran Khanh Dang, Josef Kiing, Roland Wagner, Nam
Thoai, and Makoto Takizawa (Eds.). Springer International Publishing, Cham,
228-236.

[50] P.Jonathon Phillips, Harry Wechsler, Jeffrey Huang, and Patrick J. Rauss. 1998.

The FERET database and evaluation procedure for face-recognition algorithms.

Image and Vision Computing 16, 5 (1998), 295-306.

Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Techni-

cal Report DAIMI FN-19.

[52] PyTorch. 2020 (accessed June 26, 2020). Training a Classifier. https://pytorch.

org/tutorials/beginner/blitz/cifar10_tutorial.html

Vinayakumar R, Mamoun Alazab, Soman Kp, Prabaharan Poornachandran, and

Sitalakshmi Venkatraman. 2019. Robust Intelligent Malware Detection Using

Deep Learning. IEEE Access PP (04 2019), 1-1. https://doi.org/10.1109/ACCESS.

2019.2906934

[54] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and

Charles Nicholas. 2017. Malware detection by eating a whole exe. arXiv preprint

arXiv:1710.09435 (2017).

[56] Edward Raff, Richard Zak, Russell Cox, Jared Sylvester, Paul Yacci, Rebecca Ward,
Anna Tracy, Mark McLean, and Charles Nicholas. 2018. An investigation of byte
n-gram features for malware classification. Journal of Computer Virology and
Hacking Techniques 14 (2018), 1-20. https://doi.org/10.1007/s11416-016-0283-1

[57] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad:

100,000+ questions for machine comprehension of text. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing (EMNLP).

Karthik Raman. 2012. Selecting Features to Classify Malware. In Proceedings of

InfoSec Southwest.

[59] Marco Ramilli. 2016. Malware Training Sets: a machine learning dataset for ev-
eryone. https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-
learning-dataset-for-everyone/ [Online; December 2016].

[60] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ah-

madi. 2018. Microsoft Malware Classification Challenge. CoRR abs/1802.10135

(2018).

Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of constraint

programming. Elsevier.

[62] Phil Roth. 2019. EMBER Improvements. https://www.camlis.org/2019/talks/roth
Part of CAMLIS.

[63] Phil Roth, Hyrum Anderson, and Sven Cattell. 2019. Extending EMBER. https:
//www.elastic.co/blog/extending-ember [Accessed April 2020].

[64] Ethan M. Rudd, Felipe N. Ducau, Cody Wild, Konstantin Berlin, and Richard E. Ha-
rang. 2019. ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation.
CoRR abs/1903.05700 (2019). http://arxiv.org/abs/1903.05700

[65] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. 2018. To-
wards the first adversarially robust neural network model on MNIST. CoRR
abs/1805.09190 (2018).

[66] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2019. Mastering atari, go, chess and shogi by planning with
a learned model. arXiv preprint arXiv:1911.08265 (2019).

[67] David Sculley, Jasper Snoek, Alexander B. Wiltschko, and Ali Rahimi. 2018.
Winner’s Curse? On Pace, Progress, and Empirical Rigor. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net.

[68] Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AV-

class: A Tool for Massive Malware Labeling. In Proceedings of the International

Symposium on Research in Attacks, Intrusions, and Defenses (Lecture Notes in

Computer Science), Fabian Monrose, Marc Dacier, Gregory Blanc, and Joaquin

Garcia-Alfaro (Eds.), Vol. 9854. Springer, 230-253.

Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt. 2018. Malrec: Compact full-

trace malware recording for retrospective deep analysis. In Detection of Intrusions

and Malware, and Vulnerability Assessment - 15th International Conference, DIMVA

2018, Proceedings (Lecture Notes in Computer Science). Springer-Verlag, 3-23.

[70] M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, and Muddassar Farooq. 2009.
PE-Miner: Mining Structural Information to Detect Malicious Executables in
Realtime. In Recent Advances in Intrusion Detection, Engin Kirda, Somesh Jha, and
Davide Balzarotti (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 121-141.

[71] Micha Sharir, Amir Pnueli, et al. 1978. Two approaches to interprocedural data flow
analysis. New York University. Courant Institute of Mathematical Sciences dAe.

[72] Samarth Sinha, Animesh Garg, and Hugo Larochelle. 2020. Curriculum By

Texture. arXiv:2003.01367 [cs.LG]

M. R. Smith, J. Ingram, C. Lamb, T. Draelos, J. Doak, J. Aimone, and C. James.

2018. Dynamic Analysis of Executables to Detect and Characterize Malware. In

2018 17th IEEE International Conference on Machine Learning and Applications

(ICMLA). 16-22.

(51

[53

[55

[58

[61

[69

[73

12

(74]

(75]

[76]

(7]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

[86]

Smith and Johnson, et al.

Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. 2014. An
Instance Level Analysis of Data Complexity. Machine Learning 95, 2 (May 2014),
225-256.

R. Sommer and V. Paxson. 2010. Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection. In 2010 IEEE Symposium on Security
and Privacy. 305-316.

Blake E. Strom, Andy Applebaum, Doug P. Miller, Kathryn C. Nickels, Adam G.
Pennington, and Cody B. Thomas. 2018. MITRE ATT&CK™: Design and Philosophy.
Technical Report 18-0944-11. MITRE Corporation, McClean, VA. 37 pages.
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence (San Francisco, California, USA) (AAAI’17). AAAI Press, 42783A$4284.
Antonio Torralba, Kevin P. Murphy, William T. Freeman, and MArk A. Rubin.
2003. Context-based vision system for place and object recognition. In Proceedings
Ninth IEEE International Conference on Computer Vision, Vol. 1. 273-280.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, 1. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.).
Curran Associates, Inc., 5998-6008. http://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf

Giovanni Vigna and Davide Balzarotti. 2018. When malware is packin’ heat. In
Enigma 2018 (Enigma 2018).

R. Vyas, X. Luo, N. McFarland, and C. Justice. 2017. Investigation of malicious
portable executable file detection on the network using supervised learning
techniques. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM). 941-946.

Xiaozhou Wang, Jiwei Liu, and Xueer Chen. 2015. Microsoft Malware Classification
Challenge (BIG 2015): First Place Team: Say No to Overfitting. https://github.com/
xiaozhouwang/kaggle_Microsoft_Malware

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In Proceedings of the
32nd International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille, France,
2048-2057.

Hiromu Yakura, Shinnosuke Shinozaki, Reon Nishimura, Yoshihiro Oyama, and
Jun Sakuma. 2019. Neural Malware Analysis with Attention Mechanism. Com-
puters & Security (08 2019), 101592. https://doi.org/10.1016/j.cose.2019.101592
Guanhua Yan, Nathan Brown, and Deguang Kong. 2013. Exploring Discriminatory
Features for Automated Malware Classification. In Detection of Intrusions and
Malware, and Vulnerability Assessment, Konrad Rieck, Patrick Stewin, and Jean-
Pierre Seifert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41-61.
Ziyun Zhu and Tudor Dumitras. 2016. Featuresmith: Automatically engineering
features for malware detection by mining the security literature. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
767-1778.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392



