
Module Systems and Developer Productivity
*A whitepaper for the [2020 Collegeville Workshop on Scientific
Software] (https://collegeville.github.io/CW20/),focusing on Developer
Productivity.*
[Joe Frye](mailto:jfrye@sandia.gov); [*Sandia National
Laboratories*](www.sandia.gov)
Introduction
Many modern scientific software projects depend upon a common ecosystem of
community software. It is not uncommon for a project to depend on a dozen
different third-party libraries. These dependencies are often highly
configurable, difficult to build, and can have tailored dependencies of their
own. A11 too often, developers are forced to spend a significant amount of
time just putting together a working environment in which to develop. That
lost time that could have been spent on more valuable activities.
Additionally, having developers install their own dependencies leads to
inconsistent development environments across a team; that is, each developer
may install slightly different versions of libraries with slightly different
configurations. This frequently leads to defects and inconsistent behaviors
and causes developers to spend an inordinate amount of time rooting out bugs
because it is unclear whether the problems are in the application itself or
in one of its numerous dependencies. Moreover, having to configure and build
libraries puts an onerous tax on build and test cycles; I have personally
been involved with projects where 75% of the build time is just building
dependencies.
Providing developers with a common infrastructure to access the dependencies
they need in a consistent, easy-to-use way can solve these problems and
directly improves developer productivity. First, if a system can provide
pre-installed, ready-made libraries, there is no wasted time spent by
developers installing dependencies. Second, by provisioning a consistent set
of packages across development environments, the system makes it easier for
developers to locate defects in their project code. Finally, if libraries can
be made available on-demand, then projects can build their code from a clean
slate without added overhead. In short, this means that developers can get on
with the business of development.
A11 of these things can be accomplished by having a sufficient and mature
environment module system. In this white paper, we will describe the design
and implementation decisions involved in constructing such a system, using a
real-world example.
Background
By a module system, here we mean a collection of environment modules that
have been curated in some way and that provides a standard way for users to
access their dependencies. Environment modules are way to modify a user's
environment to include some preinstalled software. Users can issue commands
like -module load-, -module avail-, and -module list- to manipulate their
environment, see what preinstalled software they can leverage, and see which
modules they have already loaded. Environment modules at the basic level are
just a mechanism to set and manipulate environment and variables; this allows
the system to expose or hide pre-installed libraries. A module for a
third-party library might set some environment variables to let the user know
where those libraries are located as well as append that path to
-LD LIBRARY PATH-. Meanwhile, an environment module for a utility would add
the -bin/- directory to -PATH-. When a user unloads a module then all the
environment variables that were set go back to being unset and any paths that
were prepended to -LD LIBRARY PATH- and -PATH- are removed from these
variables. Here is an example of loading and unloading a python module:
---console
$ which python
/usr/bin/python
$ module load python/3.7.3
$ which python
/home/projects/x86-64/python/3.7.3/bin/python
$ module unload python/3.7.3
$ which python
/usr/bin/python
„..

In short, when we talk about a module system, we are referring to a
collection of software packages that have been created in an intentional way
to work together and are accessible using environment modules. In order to be
most effective, a module system should have certain characteristics which we
shall discuss in the following section.
Design Considerations
Using a well-thought-out environment module system has some significant
advantages to developer productivity. Projects can greatly reduce build time
so developers can see results much quicker because they do not have to build
their dependencies in addition to their project's source code. This is
especially pronounced in automated testing where it is common to build
completely from scratch. Another advantage is that such a system can
standardize the programming environment across the project. A11 the
developers use the same version and configuration of the dependencies.
Differences between two developers' versions of the project are almost
certainly due to code in the project itself, not from the environment. Once

SAND2020-6782C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

again, by providing a common environment, such a module system can make
reproducibility much easier between developers and platforms.
Easy to Use
Perhaps the most important thing to consider when designing a module system
is that it needs to be easy for the user to see what is available and easy
for the user to load a consistent set of software into their environment.
This means that when they do a -module avail- they see reasonable output that
is organized in such a way that they can easily tell what is available to
them. I have seen many cases where modules are unorganized and follow no
standard. This quickly becomes impossible to navigate for users. The
following is an example of something I see often and hopefully illustrates
the point that this can quickly become confusing:

openmpi/1.10
openmpi/1.10 manual
openmpi/1.10 update
openmpi/1.8
openmpi/1.8 intel-2018
openmpi/2.1.3
openmpi/2.1.3 gcc-4.9.3
openmpi/2.1.6 not this one
openmpi/2.1.6 with-hwloc
openmpi/2.1.6 with-pmix

Some of these give you detail about which compiler was used to build it, some
of them give detail about some configure options that were used, some have an
English word or phrase, and some are just a version. I can wager a
reasonable guess at how they all differ but it is not entirely clear.
Suppose I am new to this platform and I know I need openmpi 2 for my project
it is not clear which to choose or why.
Consistency
Another important factor to consider while designing a module system is
consistency. I think of this in a few ways in the context of modules. One
is that all the modules in the system should behave in a similar well defined
way that the users can easily predict. For example you may want to set some
environment variables when a module is loaded to point to the install root of
the package as well as where the libraries are in that install so a module
for boost may set -BOOST ROOT- and -BOOST LIB DIR-. Consistency in this case
is that when you create a module for hdf5, you set the environment variables
-HDF5 ROOT- and -HDF5 LIB DIR- not -HDF5 BASE- and -HDF5 LIBRARIES-. It does
not matter what you want to call the environment variables but pick something
that is easy for users to predict. The other aspect of consistency that is
helpful is consistency between platforms. Teams are expected to run on
multiple platforms so as much as possible the modules systems should be
similar on each different platform. A familiar and easy to use interface to
get dependencies will cut down on frustration and increase developer
productivity.
Implementation Decisions
Now we can delve into the challenges in realizing an effective solution for
dependency management. There are many things to consider when implementing a
module system For example, maintainers can install similar versions of a
package and rarely have a strategy to deprecate them, which increases the
maintenance burden and pollutes the system. However we will focus on the
particular issue of making it easy for a user to load consistent modules.
How to Communicate which Modules are Consistent with Each Other
In order to ensure that TPLs work together they usually need to be built with
the same compiler, mpi, and sometimes other dependencies. Suppose you are
supporting 2 compilers, 2 mpis, and package "A" that needs mpi. You will
need to build package "A" 4 separate times (one for each compiler/mpi
combination). To make things more concrete, let's name the compilers and
mpis. For purposes of the example let's say we are supporting gcc-7.2.0 and
intel-19 with openmpi-3.0.0 and openmpi-4.0.0 and package "A" at version
1.0.0. To build our package "A" we will build once with gcc-7.2.0 and
openmpi-3.0.0, once with gcc-7.2.0 and openmpi-4.0.0, and so on.
--mermaid
graph TD;

gcc7[gcc-7.2.0] --> ompi3gcc7[openmpi-3.0.0 built with gcc-7.2.0];
gcc7 --> ompi4gcc7[openmpi-4.0.0 built with gcc-7.2.0];
I19[intel-19] --> ompi3I19[openmpi-3.0.0 built with Intel-19];
119 --> ompi4I19[openmpi-4.0.0 built with Intel-19];
ompi3gcc7 --> Agcc7ompi3[Package A built with gcc-7.2.0 and openmpi-3.0.0]
ompi4gcc7 --> Agcc7ompi4[Package A built with gcc-7.2.0 and openmpi-4.0.0]
ompi3I19 --> AI199ompi3[Package A built with Intel-19 and openmpi-3.0.0]
ompi4I19 --> AI19ompi4[Package A built with Intel-19 and openmpi-4.0.0]

How do you communicate to users which modules are compatible?
Use Long Module Names: One way this is done in a flat module system is to
embed that information in the module name. so the users would see 4 modules
for package A:

A/1.0.0/gcc/7.2.0/openmpi/3.0.0
A/1.0.0/gcc/7.2.0/openmpi/4.0.0

A/1.0.0/inte1/19.0.0/openmpi/3.0.0
A/1.0.0/inte1/19.0.0/openmpi/4.0.0

The user is then expected to understand that
HA/1.0.0/gcc/7.2.0/openmpi/3.0.0u means that if you umodule load
A/1.0.0/gcc/7.2.0/openmpi/3.0.0u you will get package "Au at version 1.0.0
added to your environment and that it will have been built with gcc-7.2.0 and
openmpi-3.0.0. Of course, the example above only shows the modules for A.
In this simple example we would need all of the following modules available
to users:

gcc/7.2.0
inte1/19.0.0
openmpi/3.0.0/gcc/7.2.0
openmpi/3.0.0/inte1/19.0.0
openmpi/4.0.0/gcc/7.2.0
openmpi/4.0.0/inte1/19.0.0
A/1.0.0/gcc/7.2.0/openmpi/3.0.0
A/1.0.0/gcc/7.2.0/openmpi/4.0.0
A/1.0.0/inte1/19.0.0/openmpi/3.0.0
A/1.0.0/inte1/19.0.0/openmpi/4.0.0

In order to get a consistent set of dependencies a user then needs to:

module
module
module

load gcc/7.2.0
load openmpi/4.0.0/gcc/7.2.0
load A/1.0.0/gcc/7.2.0/openmpi/4.0.0

making sure the compiler and MPI are consistent in what they load.
obviously annoying and becomes tedious for users once you have more
couple supported packages.
Create Devpacks: One way to help is to create "devpacksu, where
is a single module that loads other modules known to be consistent,
could also do all the work of putting the consistent set of software in a
user's environment in one module. This makes it easy for users to load the
right set of modules to be consistent but it adds to the clutter of seeing
all the modules at once.
Provide Smart Modules: Another approach is to have modules that query the
environment and then set environment variables and paths based on what has
already been loaded. In this type of system, you would only have one module
for any given version of a package, for example -boost/1.70.0-, but the
module would decide at load time which installation to point to based on
environment variables set by other modules. In this way, the number of
modules displayed through -module avail- is dramatically decreased but users
can still see what software and versions are available through modules. One
of the largest strengths of this style is that it presents a nice easy to use
interface for developers.
Hierarchical Modules: The final way to deal with this in my experience is
to use LUA-based hierarchical modules. In this approach when a user does a
-module avail- the first time they only see compiler modules. After loading
one of the compiler modules, -module avail- will display a new set of modules
that have all been built with the loaded compiler. There can be multiple
levels in the hierarchy, another common one is MPI. If this is the case then
a user will see a new set of moduels available after they load an mpi module.
This ensures that the user loads a consistent set of modules but it is not

obvious exactly what is available on the system and the user needs to do some
digging to find what they need.
Discussion
At Sandia we can find all of the above implementations on different on
different projects. One in particular has been especially impactful which is
a smart module system where the installations and module files are shared
across machines. These two things combine to make an especially useful
system that is easy to use and is widely available. As mentioned above, the
smart modules greatly reduce the clutter a user sees by deciding which
installation to point to at load time based on what has already been loaded.
This system clearly presents what modules a user can load and is easy to use.
By having one install that is shared we can add software for customers just
by installing in one place. Additionally, if defects are discovered we can
address them once, and the changes will propagate to all the other users.
---mermaid
graph LR;

modules[Module System] --> share[modules and installations shared on the
network];

installs[Install tree] --> share;
share --> WS1[Workstation]
share --> WS2[Workstation]
share --> WS3[Workstation]
share --> Testerl[Shared Project Resource]
share
share

--> Tester2[CI Build Machine]
--> Tester3[Nightly Testing Machine]

This is
than a

a devpack
or it

This module system is shared with roughly one hundred machines across dozens
of projects. This has reduced the time that developers spend trying to get a
consistent working set of dependencies because individual developers no
longer need to maintain their own TPL stack. This has also proven valuable in
getting new developers spun up faster. Using this module system has served
to standardize the dependency stack for projects that use it. Now developers
are using the same environment as each other and as the testing
infrastructure. This had lead to productivity gains through increased
reproducibility of defects making them easier to resolve.
Conclusion
Scientific software projects often rely on a complex set of dependencies that
can be very difficult to build and maintain. Providing developers with a
common infrastructure to access the dependencies they need in a consistent,
easy-to-use way can solve several problems that directly impact developer
productivity. Such a system lessens the burden on developers for maintaining
the TPL stack, standardizes the environment with testing resources, increases
reproducibility through standardization, and allows developers to spend more
time developing on their projects.
Acknowledgements
This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States
Government. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energya€TMs National Nuclear Security Administration under
contract DE-NA0003525.

