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I. Motivation [1I. Compression of volatile-rich silicate glasses VII. Data processing
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dehydration reactions. Evidence has been growing that the mantle transition zone (MTZ) contains a

- _ . _ . or ; * map measured wir) nto in-sity u* (1), then apply DLA Uni-axial strain condition
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inclusions (e.g. Pearson et al. 2014). Thus, there is an increased interest in equation-of-state (EOS)
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Fig. 14: Iterative Lagrangian analysis (ILA) determines stress-density path from velocimetry of LiF-windowed “drive” and sample.
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Fig. 15: Pulse shape for the drive (dashed) and sample response for six completed shots on Thor.
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3.Further experiments as sample materials are prepared by Corning Inc.

Fig. 2: Two regions where we think that volatile addition plays an important role in the production of melt (and the observation of low seismic 2 11 . . . . . .
velocities) are 1) in subduction zones (arc volcanism, which can be sampled directly from erupted magmas) and 2) above and below the mantle Th0r64 S mOdular energy Storage and tranSIt tlme ISOlatlon a’llow 4.Work with theory team of Cochrane, Townsend, and Lane for equation of state data that can will guide the shock-melt-
Slmple yet flne COIltI‘ 01 Of the CUIT 6nt pUISe Shapﬁ then-ramp experiments for ZFSP shot on dry and hydrated Si02 glasses to understand how volatiles are retained in melts

transition zone (samples by deep diamond inclusions).
during planetary impacts to determine the “Origin of Earth’s Water.”

II. Volatiles 1n silicates

We expect that the results of work will have significant impacts to both Earth/planetary and materials sciences.
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