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Fig. 13: A range of different pulse shapes. When all bricks are fired at once, the pink curve is produced (maximum current for Thor-64). When they
are fired sequentially the timing and amplitude of the pulse shape can vary.

• Each brick can be independently switched (in practice, trigger • Decreasing stripline panel width increases
them in groups of 4) magnetic pressure 4 higher dPIdt for given

• Long cables 4 time isolation of switches pulse shape
• 500-ns round-trip from brick to load and back = maximum • For shorter pulses -2.4 MA peak current...

spread in trigger times • 10-mm wide stripline 4 -20 GPa
• Vary loading rate by a factor of -10 by changing trigger times • 8-mm wide stripline 4 -30 GPa

and load panel width • 6-mm wide stripline 4 -40 GPa
• Increasing rise time decreases peak current 4 lower magnetic • Double-ramp pulse shapes, flat-topped pulse

pressure for given load geometry shapes, etc.
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Fig. 3: Crystalline silicates (left) - water is stored as hydroxyl (OH) units and charge balanced by defects (vacancies). This leads

to slower velocities and softer elastic moduli with increasing water content. A similar effect is observed at one atmosphere for
amorphous silicates (right).
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