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2 | Motivation B |

= Salt is a viable geologic media for the disposal of radioactive waste

= However, disposing of heat generating waste still requires further research for long-term safety case predictions

= Borehole heater test currently being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad,
New Mexico, under DOE-Nuclear Energy

= Collaboration between three National Labs: Sandia, Los Alamos, and Lawrence-Berkeley
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3| Connection to Brine

= Bedded salt (specifically WIPP) can have a fair amount of brine in the formation

= Impacts of brine on performance of repository
= Waste package corrosion effects
= Limit closure of brine-filled cavities

= Transport of radionuclides to the far field

" Main goal of the Heated Borehole Field Test is to improve the understanding of brine

availability and evolution of brine chemistry in bedded salt when heated
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4| Fluids in Salt

= Three main types of fluid in salt:
" Intergranular water (between grains)
" Intragranular water (fluid inclusions inside grains)
" Hydrated minerals

= Clays (5-18% H,O by weight)
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View field: 1.04 mm Det: BSE 200 pm

= Gypsum (21% H,O by weight)
= Polyhalite (6% H,O by weight)
" Water sources respond differently to heat
= Brine between grains flows first (ambient)

* Fluid inclusions move/break due to temperature

= Clays dehydrate at <100° C
= Gypsum dehydrates 75 — 175° C
= Polyhalite dehydrates =2300° C

= Want to discern contributions from these brine sources through time at different temperatures



;1 Laboratory Experiments

= Laboratory brine evaporation experiments support possible outcomes from the field test
= Conducted brine analysis on multiple brine types and evaporation experiments at varying temperatures
of 50°C, 75°C, and 100°C
= Analyze liquid chemistry

= Analyze precipitant composition

= Perform EQ3/6 geochemical models

= Compare to historical samples : L -
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6| Experimental and Analysis Techniques

Prepare brine solutions

" Type 1: Dissolve WIPP salt in water until saturated
" Type 2: Modified Synthetic Salado WIPP GWB brine

= Heat brine in vacuum oven and sample periodically
* Analyze Liquid

" Jon Chomatography (IC)
" JTon Coupled Plasma-Optical Emission Spectrometry (ICP-OES)

Analyze Precipitants
= X-ray Fluorescence (XRF)
"= Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS)
= IC and ICP-OES of redissolved precipitated solids

Complexities
= High dilution required for liquids

" Need to cross section solids for internal composition on SEM-EDS



Na*/Cl~ (weight ratio)

7| Modeling Methodology: EQ3/6
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e = EQ3/6 is a geochemical simulator with Pitzer capabilities being
. o 2ol used to predict:

4 .:
:’i = Evolution of brine during evaporation

I ¢ = Precipitant expected in the heated borehole
_ ) = Better understand contributions from each possible brine components
e present in the salt

= Laboratory experiments provided validation datasets for modeling

. of brines under controlled experimental conditions at a range of
I B R I e relevant temperatures
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sl Previous Brine Studies
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Many studies related to the evaporation of seawater,

but few on the evolution of WIPP brines or brines of |
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similar composition

Experimental methodology similar to approaches by _

Krumbhansl et al (1991) and McCaffery et al (1987)
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Krumbhansl et al (1991):

Na*/Cl~ (weight ratio)

* Analyzed composition of various WIPP brines from .

different locations and marker beds
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* Conducted an evaporation study with sourced WIPP

brine over seven months

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

. b4 + +4 H h H
* However, humidity and temperature were not KTMaT (gt o)

Blue = WIPP fluid inclusions

Yellow = near Marker Bed 139
experiment are unclear Green = near Marker Bed 140

Red = Recent samples from drift borehole
Gray = Krumhansl evaporation experiment

measured or controlled, and certain aspects of the



9| Brine from Dissolved WIPP Salt?
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= Takeaway: Can see differences in brine sources from analysis!




10| Modified Synthetic Brine

= Followed an existing approach and recipe from Xiong, 2008 to create a G-Seep WIPP brine

= Used different proportions of salts to math the expected MU-0 brine better

g/L solution g/L solution
Salt GWB (Xiong, 2008) | MU-0 brine
NaCl 179.61 177.08
KClI 34.84 29.45
LiCl 0.19 0.21
NazB407*10(Hz20) 15.06 1291
CaCl2*2(H=20) 2.03 1.04
NaBr 2.74 1.96
MgCl2*6(Hz0) 207.05 180.44
Na:504 2523 24.02|
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Results: Evaporation Studies with Model Predictions
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2 | Results: EQ3/6 Predictions for 50°C Evaporation
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s 1 Results: SEM
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" | Future Work

= Multiple quantitative comparisons will be made between modeling results and laboratory data to improve

simulations and accuracy, and better understand the geochemical systems

= Mineral phases observed in experiments will be further investigated and compare quantitatively to predicted

phases at all three temperatures.

= Quantify and assess the importance of uncertainty of both laboratory measurements and numerical model

predictions.

* Helps identify the level of match expected between numerical model and field observations, given their inherent

uncertainties
= Collect and analyze field samples during the borehole field test for their composition and degree of evaporation

= BEffort into estimating pH accurately, and possible measurements of specific gravity and electrical conductivity



