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3 I Introduction & Motivation

Control of large scale systems is traditionally done at the local level (e.g. power
systems)

Advent of wide-area measurements has challenged this approach. However wide
area measurements make available only certain information

This work re examines the optimal output feedback control problem —where the
idea is to find an optimal gain based on the outputs of the system

Additionally this works addressed the problem of adding constraints to the optimal
gain, two constraints are considered:
The sum of the rows of the optimal gain equals a specified value

Specific components of the optimal gain are set to zero



4 Optimal Output Feedback Control

For a linear time invariant system described by

(t) = Ax(t) Bu(t)

y(t) = C x(t)
x n tt G Y G
states control inputs outputs

°The optimal output feedback control problem

u(t) = K y(t)

The problem is to find the optimal gain to minimize an index

Typical cost function to minimize:

min J(K , T) with K E imxP
K

J(K , T) = x(t)T (Q + CT KT RKC) x(t) dt x(T)T S fx(T) (11) where
z

R>0 E Rn"
finite time quadratic cost function Q> 0 E RnXn

The optimal gain K* is assumed to exist and belong to: S {K ERmxP : ReNA BKC)} < Of



5 I Optimal Output Feedback Control

°Finding a solution on index (II) is dependent on the initial conditions (not desirable). To circumvent
this problem, an alternative index is proposed

j _ 
UT

X (t)T (Q + CT KT RK C) x(t)dt + x(T)T S f x(T)}

1 0

expected value —> Li, { x0x-or } ° X0

oThe problem is reformulated as min J(K1 T)K

oBy using x= x(t)x(t)T

oThe problem is rewritten as
T

min J(K,T)= f tr {(Q +CT KT RKC)X} dt+tr{XTSfX}
K 0

subject to X (t) = (A + BKC)X(t)+ X(t)(A+BKC)T



6 I Optimal Output Feedback Control

NA Hamiltonian is needed to solve this problem

H(X, A, K) = tr{(Q + CT KT RKC)X} + trfATRA + BKC)X + XT (A + BKC)]}

1 The stationarity conditions are
OH •
= —A = Q + CT KT RKC + A(A + BKC) + (A + BKC)T A

OX

mIn the infinite horizon case T DO

OH •
= X = (A + BKC)X + X(A+ BKC)T

OA

A(T) = Sf X(0) = Xo1 

0 = Q + CTKTRK + A(A+BKC) + (A+BKC)TA

0 = (A + BKC)P + P(A + BKOT + Xo

of ,o = — = 2 WK C + BT A)
1 

PCT
OK i

1

D°Lyapunov type with X dt = PI 

K* = —R-1 BT APCT (C PCT ) —1



7 I Structuring the Optimal Gain

'The optimal gain can be written as

K
:

k11 k12 klp

k21 k22 •• • k2
•

t ti 1 km

•

kmp

Power systems motivation for structuring the optimal gain:

In power systems the ̀ accesible' outputs (wide-area) are machine speeds, i.e. y =

Note that in a power system whose synchronism is preserved as t  > -X then

waj (t) = L' V j.    1 . . . p

The sum of the rows of K represents the droop gain (steady state action) for a
particular actuator.



8 I Structuring the Optimal Gain

°This work proposes a method to fix the sum on the rows of the control gain while maintaining an
optimal control approach to compute it.

Fixing the sum of the rows means: Klp =

To impose this constraint consider

x n

v1

v2

Vm_

A -
=v

<— matrix with all zeros except those in its jth column which are 1

°The penalty function to be included in the cost function is

g2(K) = -)/T3I(K — T)T(K - T)Tj

Parameter that reflect the importance of
enforcing the constrain

with
E RmXp

1
T

T = v P



9 I Structuring the Optimal Gain

An additional structure that this work imposes to the optimal gain is the possibility of making
individual gains kii zero

°The idea is to penalize any individual component of the gain

using Ej = [ei 0] and Wi = diag(wi,j, w2,i, • • • 1 tvm,j)

The term EI KT WiK  Ej can be appropriately included in the cost function

and the element tvi,j in Wj penalizes the component kij of the optimal gain

P 

To penalize terms at all columns: 91(K) = >..: El 1-(TWJKEj
j=i



I Structuring the Optimal Gain

°The reformulation of the optimal output feedback control problem is

J(K,T)
o

T

x (t)T (Q + CT KT R K C [gi 

(K)

+

added penalty function for
setting individual gains to
zero

Again redefining the cost function to J(K, T)

The problem is again min J(K, 7-)
K

{J(K, T)}

(t) dt x(T)T f x(T)

AN

added penalty function for
setting the rows to a selected
value

where K is assumed to exist and is chosen from the set Ls of stabilizing gains

{K E m" : ReNA BKC)} < 01

Note that this approach is a
soft constraint approach



11 I Structuring the Optimal Gain

°The solution of the reformulation of the OFC needs the following Hamiltonian function

H(X, A, K) = tr{ + CT KT RKC + (K - T)r (K ET KT W3K E3) X}
3=

+ tr{AT ((A + BKC)X XT (A + BKC)) }

The stationarity conditions are then

OH •
= -A = Q CT KT RKC

ax

OH

DA

+ + BK)TA
j=1

ET KT WJKEj 7TT (K - T)T(K - T)T + A(A + BK)

= (A + BKC)X X(A+ BKC)T

A(T) = Sf

X(0) = X0



12 I Structuring the Optimal Gain

°The solution of the reformulation of the OFC control problem when considering the infinite horizon case

T and with the following definitions

x=x(ox(t)T pc X dt = Plo Sf

is obtained from the following equations:

= Q CT KT RK E ET KT WjKEJ ry TT (K — T)T (K — T) (E1)
i=1

A(A BKC) (A+ BKC)T A

0 = (A + BKC)P P(A BKC)T Xo (E2)

0
al
OK

Lyapunov like

2 (RKC BTA) PCT + 2 WiKEJPE; +27KTPTT — 2-yTTPTT (E3)

i=1



13 I Structuring the Optimal Gain

°Formulation of the optimal output feedback control:

o = —
0J 
=

( 

OK 
2 (RKC + BT A) PCT + 2

BTAPCT — 77TPTT + RKCPCT +

j=1

WiKEiPE1 +27KTPTT — 27TTPTT (E3)

p

WiKEiPET + 7KTPTT = 0

t t t
°This final equation is a linear matrix equation of the form

n 

> = 2 AiXBi = C
i=i

which can be solved iteratively



14 Numerical Solution

'The implemented algorithm follows the form of a classic Anderson-Moore Algorithm

Algorithm 1

Step 0: Select an initial stabilizing feedback gain Kk =
Ko E S, set k = 0, and choose a small positive parameter
6.

Step 1: With K = Kh., solve the Lyapunov equation(E2)
for P Pk

Step 2: With K = Kk solve the Lyapunov equation (E1)
for A —> Ak

Step 3: With A = Ak, P = Pk, solve the linear matrix
equation in (E3) for the optimal gain K Kk.

Step 4: Compute the descent direction AKk = kk — Kk.

Step 5: Compute llAKklIFI where l l • 11F denotes the
Frobenius norm. If ll AlCk IIF < 6, stop the algorithm;
otherwise, choose a value of ak, 0 < ak < 1, compute

Kk+1 = Kk ctAKk

set k = k +1, and go to Step 1.



15 1 Power Systems Example

°Test system: two-area, four-machine power system with six energy storage devices

G1

ES1 ES2 ES3 ES4 ES5 ES6

TZ

G2

2

9
7

17

L17

10

11

G4

4

G3
x E R42

y E R4 (machine speeds)

u E R6 (actuators / energy storage devices)

°The power system has a dominant inter-area oscillation that is poorly damped



16 I Power Systems Example
Cases considered for
control design

• Case 0 no further constraints are imposed on K.
• Case 1 imposes the constraint that the rows of K add

up to zero (i.e. T = 0).
• Case 2 imposes the following structure in the gain K,

K

• 0 • 0 
0 • 0 •
• 0 0 •
0 • 0 •
• 0 • 0
0 • • 0

Note that the desired structure assumes that only 2
measurements out of the 4 are available for each ES
device.

• Case 3 imposes the same structure as Case 2 but with
the added constraint that the rows of K should add up
to zero.



17 I Power Systems Example

°The control gains for each of the cases considered

Ke0 =

53.653
28.842
14.732
-14.999

30.305
21.717
11.821
-8.452

-21.821
-15.720
-10.940
16.817

-21.402
-15.127
-10.380
17.351 K,1 =

38.939
21.687
12.797
-18.900

20.236
16.828
10.506
-11.126

-30.069
-19.682
-11.966
14.677

-29.106
-18.834
-11.337
15.349

-29.446 -17.548 22.360 22.921 -28.905 -17.160 22.760 23.304
-48.246 -29.712 30.312 26.658 -40.804 -24.572 34.646 30.730

65.693 - 0 -29.304 - 0 43.850 - 0 -43.850 - 0 -
- 0 31.547 - 0 -21.226 - 0 25.742 - 0 -25.742

K,2 =
18.019
- 0

- 0
-12.884

- 0
- 0

-15.174
25.022 Ke3 =

16.321
- 0

- 0
-19.505

- 0
- 0

-16.321
19.505

-35.740 - 0 31.286 - 0 -33.103 - 0 33.103 - 0
- 0 -45.389 38.487 - 0 - 0 -41.402 41.402 - 0



18 I Power Systems Example
Time domain simulations (of the nonlinear system)

20
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20

Every controller considered damps the inter-area oscillation properly

In cases two and three (where half of the information is available) the performance is comparable to
the other cases

For cases 1 and 3 the output of the actuator is zero (as desired) with no decrease in performance

25



19 I Conclusions

The paper reconsiders the optimal output feedback control problem where only output
measurements are available for control design

The paper considers imposing a structure on the optimal gain
■ Some gains need to be zero as information from some output may be unavailable to certain actuators

■ The sum of the rows of the optimal gain matrix is equal to a desired set of values

■The structure was imposed using a soft constrain approach with the necessary conditions
for the infinite horizon case yielding a set of matrix equations (two of them of the
Lyapunov-type)

■The paper shows the application of imposing a structure of the optimal gain to a power
system problem. For these kind of systems the sum of the rows of the control matrix is the
droop (or steady state gain). For an application such as energy storage such a gain can be set
to zero.
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