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; | Introduction & Motivation

“Control of large scale systems 1s traditionally done at the local level (e.g. power
systems)

" Advent of wide-area measurements has Chaﬂenged this approach. However wide
area measurements make available only certain information

*This work re examines the optimal output feedback control problem —where the
idea 1s to find an optimal gain based on the outputs of the system

= Additionally this works addressed the problem of adding constraints to the optimal
gain, two constraints are considered:

* The sum of the rows of the optimal gain equals a specified value

= Specific components of the optimal gain are set to zero
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"For a linear time invariant system described by

@(t) = Ax(t) + Bu(t) r € R"” u € R™ y € RP
y(t) = Cx(t) states control inputs ~ outputs

“The optimal output feedback control problem

u(t) = Ky(t)
“The problem is to find the optimal gain to minimize an index min J(K,7) with K € R™XP
K

“Typical cost function to minimize:

J(K, ) = / 207 (Q+ CTKTRKC) a(t) di+(r)T Sya(r) (1) where

0
/ R >0 € R"™"
finite time quadratic cost function Q>0 e R™™"

The optimal gain K* is assumed to exist and belong to: S £ {K € R™*? : Re{\(A+ BKC)} < 0}
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*Finding a solution on index (I1) is dependent on the initial conditions (not desirable). To circumvent
this problem, an alternative index is proposed

F — E{/ x(t)T(Q + CTKTRKC):c(t)dt -+ x(T)TSfx(T)}
\lf 0
expected value —» [ {xol’g} = X0

*The problem is reformulated as  min .J (K, 7)
K

"By using X = z(t)x(t)’
“The problem i1s rewritten as

min J(K, 7) :/ tr {(Q+C"K'RKC)X} dt+t{z" Sz}
0

subjectto X (t) = (A+ BKC)X(t) + X(t)(A+ BKC)'
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*A Hamiltonian 1s needed to solve this problem
H(X,AK)=uw{(Q+C'K'RKC)X} +tuw{A"[(A+ BKC)X + X' (A+ BKO)]}

l *The stationarity conditions are

OH .

= = ~A=Q+C"K'"RKC+A(A+ BKC)+ (A+ BKC)TA
OH - T

—r = X =(A+BKC)X + X(A+ BKC)

A(T):Sf X(0) =Xo

|

0=Q+C'K'RK + A(A+BKC) + (A+BKC)'A
0=(A+BKC)P+ P(A+ BKC)'" + X,
0.J
= _—— =2(RKC+B"A)PC"
o |(B C + ) PC |

1

E* = _RB'"APC foPC !

"In the infinite horizon case 7 — O
Lyapunov type with / Xdt=P
0

0

(@)

T ' 5
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“The optimal gain can be written as

p— —

k'll klg 2 B klp
kgl kgg . s kgp
K=1. . :
_kml km2 5 kmp_

“Power systems motivation for structuring the optimal gain:

In power systems the ‘accesible’ outputs (wide-area) are machine speeds, i.e. y = [Wa1 ... Wap]

Note that in a power system whose synchronism 1s preserved as ¢ — oo then

i sll) = g Vi=1...p

“The sum of the rows of K represents the droop gain (steady state action) for a
particular actuator.
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*This work proposes a method to fix the sum on the rows of the control gain while maintaining an
optimal control approach to compute it.

U1
U2

[|>
o

Fixing the sum of the rows means: K1, =

*To impose this constraint consider

T, € RP*"  <«—— matrix with all zeros except those in its jth column which are 1

“The penalty function to be included in the cost function 1s

g2(K) =T} (K = 1) " (K - T)T;

with \‘

D Parameter that reflect the importance of
enforcing the constrain

S =
m
7

I
Cl )
[a—y
= ‘*cs_| >3<
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" An additional structure that this work imposes to the optimal gain is the possibility of making

individual gains k;; zero
“The idea is to penalize any individual component of the gain
using Ej = [ej 0] and Wj = diag(wl’j, w27j, o ,wm’j)

The term EJT K TWj KE; can be appropriately included in the cost function

and the element w;,j in W) penalizes the component k;; of the optimal gain

p
To penalize terms at all columns: ¢ (K) = Z EjTKTWj KE;
j=1
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“The reformulation of the optimal output feedback control problem is

J(K,T) = /0 ' x(t)" (Q +CTK"RKC 4{91(1()]+ [gg(K)])az(t) dt + z(1)" Srx(r)
P ~N

added penalty function for added penalty function for
setting individual gains to ~ setting the rows to a selected
ZEro value

“Note that this approach is a
Again redefining the cost function to J(K,7) = E{J(K,7)} soft constraint approach

The problem is again ~ min J(K,7)
K

where K 1s assumed to exist and is chosen from the set § of stabilizing gains

S 2 [K € R™*? ; Re{\(A + BKC)} < 0}
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“The solution of the reformulation of the OFC needs the following Hamiltonian function

p
H(X, A K) = tr{ (Q +CTKTREC+AT (K -1)T(K-1)T+Y_ EJ.TKTWJ-KEJ-)X}

J=1

+ue{AT ((A +BKC)X + XT(A+ BKC)) }

"The stationarity conditions are then

OH : -
a5 = —A=Q+ C'K'RKC+ ) E/K'W,KE; +yT"(K - Y)" (K — )T + A(A + BK)
j=1
+(A+BK)"A
OH T
YT = X=(A+BKC)X + X(A+ BKC)
A(r) = Sf
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“The solution of the reformulation of the OFC control problem when considering the infinite horizon case
r — oo and with the following definitions

X:gj(t)gj(t)T /0 Xdt=P Sy=0
is obtained from the following equations:

p
0=Q+C'K'RK+Y E/K'W;KE; + 7T (K - T)"(K - T) (E)

.

+A(A+BKC)+ (A+BKC)'A

0=(A+BKC)P+P(A+BKC)" + X, (E2) _—

~

p
0 = % =2(RKC+B"A)PC"+2) W,KE;PE] +2yKTPT" —2yYTPT" (E3)

Lyapunov like

j=1

(M)
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“Formulation of the optimal output feedback control:
0.J T T - T y T T (E3)
0=——=2(RKC+B'A)PCT+2) W;KE;PE] +2yKTPT" —2yYTPT
j=1
D

BTAPCT — yXTPT" + RKCPCT + ) ,W;KE;PE] +yKTPT' =0

S

=This tinal equation is a linear matrix equation of the form

n
Y AXB =C
i=1
which can be solved iteratively

()

T ' 5
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“The implemented algorithm follows the form of a classic Anderson-Moore Algorithm

Algorithm 1

Step 0: Select an initial stabilizing feedback gain ) =
Ky € S, set k = 0, and choose a small positive parameter
0.

Step 1: With K = K, solve the Lyapunov equation(E2)
for P — P,

Step 2: With K = K, solve the Lyapunov equation (E1)
for A — A,

Step 3: With A = Ay, P = P4, solve the linear matrix
equation in(E3) for the optimal gain K — K.

Step 4: Compute the descent direction AK; = f(k — K.

Step 5: Compute ||AK}|r, where || - || denotes the
Frobenius norm. If [|[AKg|[r < 4, stop the algorithm;
otherwise, choose a value of ay, 0 < aj < 1, compute

I'{;\-_{_l = K + aAK,
set k =k + 1, and go to Step 1.
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=Test system: two-area, four-machine power system with six energy storage devices

ES1 ES2 ES3 ES4 ES5 ES6

o« LLL TTT o "°F
1 s

@ y € R* (machine speeds)

u € RO (actuators / energy storage devices)

11 3

1
17 19 1: @

G2 L17 L19 G4

“The power system has a dominant inter-area oscillation that is poorly damped
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"(Cases considered for
control design

o Case 0 no further constraints are imposed on K.

o Case 1 imposes the constraint that the rows of K add
up to zero (i.e. T = 0).

o Case 2 imposes the following structure in the gain K,

e O e O o O

SO e o 0 O

S0 O O e
o 06 O O o e

Note that the desired structure assumes that only 2
measurements out of the 4 are available for each ES
device.

o Case 3 imposes the same structure as Case 2 but with

the added constraint that the rows of K should add up
to zero.

T Ol
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"The control gains for each of the cases considered

[ 53.653
28.842
14.732

—14.999

—29.446

| —48.246

[ 65.693
~ 0
18.019
~ 0
—35.740

~ 0

30.305
21.717
11.821
—8.452
—17.548
—29.712

~ 0
31.547
~ 0
—12.884
~ 0
—45.389

—2 1821

—15.720

—10.940
16.817
22.360
30.312

—29.304
~ 0
~ 0
~ 0

31.286

38.487

—21.402]

—15.127

—10.380
17.351
22.921

26.658 |

~ 0
—21.226
—15.174
25.022

~ 0

~ 0

[ 38.939
21.687
12.797

—18.900

—28.905

| —40.804

[ 43.850
~ 0
16.321
~ 0
—33.103

~ 0

20.236

16.828

10.506
—11.126
—17.160
—24.572

~ 0
25.742
~ 0
—19.505
~ 0
—41.402

—30.069

—19.682

—11.966
14.677
22.760
34.646

—43.850
~ 0
~ 0
~ 0

33.103

41.402

—29.106 |
—18.834
—11.337
15.349
23.304

30.730

~ 0
—25.742
—16.321

19.505

~ 0

~ 0
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"Time domain simulations (of the nonlinear system)

Ppgsi (pu)
T T T i ant e s ate e e e S e o e ]
i ,,' —No Cont| ]
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: : ‘\/l VA
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Time (s) Time (s)
“Every controller considered damps the inter-area oscillation properly

"In cases two and three (where half of the information is available) the performance is comparable to
the other cases

“For cases 1 and 3 the output of the actuator 1s zero (as desired) with no decrease in performance
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“The paper reconsiders the optimal output feedback control problem where only output
measurements are available for control design

*The paper considers imposing a structure on the optimal gain
= Some gains need to be zero as information from some output may be unavailable to certain actuators

= The sum of the rows of the optimal gain matrix is equal to a desired set of values

*The structure was imposed using a soft constrain approach with the necessary conditions
for the infinite horizon case yielding a set of matrix equations (two of them of the

Lyapunov-type)

“The paper shows the application of imposing a structure of the optimal gain to a power
system problem. For these kind of systems the sum of the rows of the control matrix is the
droop (or steady state gain). For an application such as energy storage such a gain can be set
to zero.



0 | Acknowledgment

*This research was supported in part by the Grid Modernization Lab Consortium
(GMLC) program.

*This research was supported in part by the DOE Energy Storage program under
the gutdance of Dr. Imre Gyuk.

T Ol



21

Thank Youl




22

(Questions?




