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1. Objective

templates.
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Currently, many traditional methods are used to detect arrivals in three-component
seismic waveform data collected at various distances. Accurately establishing the
identity and arrival of these waves in adverse signal-to-noise environments 1s
helpful in detecting and locating the seismic events. Autocorrelation and template
matching techniques are just a few of the various methods that may be used, each
with their own performance benefits and drawbacks. For example, template
matching methods have been shown to be effective, but are restricted to repeating
signals and become computationally intensive with increasing numbers of

In this work, we move to convolutional neural networks (CNNs). Convolutional
neural networks have been shown to significantly improve performance at local
distances under certain conditions such as induced seismicity. In this work we
expand the use of CNNs to more remote distances and lower magnitudes. We
explore the advantages and limits of a particular approach and begin to understand
requirements for expanding this technique to different types, distances and
magnitudes of events in the future. We describe in detail results of this method
tuned on a new dataset with expert defined arrival picks. The dataset used is from
the Dynamic Network Experiment 2018 (DNE18) and comes from sensors in
Utah. We demonstrate the ability to train the CNN on events from the dataset and
achieve high test set performance. Furthermore, we examine performance on
streaming data, including very low magnitude expert picked arrivals.

Goal: Use established CNN methods on a new expert picked arrival dataset to
understand advantages and limitations of current CNN methods.

3. Seismic Data (DNE18 Dataset)

The data used in this study is the 2018 Dynamic Networks Data Processing and
Analysis Experiment (DNE18) dataset. A more detailed description can be found
elsewhere in this conference (see Reference 2).

This dataset consists of University of Utah Seismograph Stations (UUSS)
waveform data spanning from 01/01/2011 through 01/14/11. Stations sample three
component data (N, E, Z) at 100 Hz. Although there are many stations to choose
from, we only use a select few for this study.

This catalog consists of a high quality, hand-picked seismic events derived from
analyst Chip Brogan’s picks with the Analyst Review Station (ARS) software as
well as other automated event input sources. The event must be sensed on 3 or
more stations in order to build an event. All events (man-made or natural)
generated match this criteria. The advantage of this dataset is the low magnitude
and expert curated events we will use as ground truth.
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Figure 2: Map of DNE18 stations (black trianglesf
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2. CNN Background

General:

time series seismic data.

CNN Architecture:

filters.

The output consists of a 1D
vector of 128 features and
then a fully connected layer
containing the class scores.
The original ConvNetQuake
categorizes waveforms into
clustered geographical
regions. We replicate that in
this work, although we are
more interested in detection
performance than location
accuracy.

CNNss are a particular type of feedforward artificial neural networks used for
processing data. Unlike traditional neural networks in which all layers are fully
connected, CNNs use a linear convolution in some layers as opposed to a full matrix
multiplication. These convolutions have several advantages over traditional fully
connected layers. Importantly, convolutions act as filters choosing spatially invariant
features and sharing these parameters throughout the data dramatically increasing the
generalizability especially in the case of time series data. Additionally, because of the
reduced connections between layers, CNNs severely reduce the parameters that need
to be trained, improving statistical efficiency. Therefore, despite there prevalence in
image recognition CNNs may also make a good candidates for pattern recognition in

In this work, we follow the lead of the architecture of ConvNetQuake (see reference 1)
and expand to new datasets and lower magnitude signals. The architecture takes raw
seismic waveforms from three component 100 Hz ground motion sensors and divides
the input into 10 second windows (see figure 1). The network consists of eight
convolutional layers that down sample the signal by a factor of two and contain 32
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Figure 1: ConvNetQuake Architecture (Reference 1) )
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4. CNN Training and Validation

Data Preparation:

window and event onset.
accuracy/detection_accuracy/train
Training:
As in Reference 1, we train the CNN by minimizing
with backpropagation the L2-regularized cross-entropy
loss function which measures the difference between the
predicted and actual class probability (signal or no
signal). We form batches of 128 windows consisting of
64 noise and 64 signal events per batch. We use the
ADAM optimizer and a learning rate of 10E-4.

The training curve for one station is shown here. Each
step (X-axis) is a batch of 128 signal and noise events.

We train until the accuracy (Y-axis) saturates without
any improvement. Here we can see accuracy saturating
at about 93%

Validation:

we use to gauge performance. We track this metric as the neural network is trained.

S

e

To train and validate the CNN, there are three general steps. Data preparation, training and validation. We go through each of these here.

Streams of waveform data are normalized for each station and divided into 10 second windows. Each window is classified as having either
seismic noise or a signal event based on labeled seismic arrivals in the event catalog for that station. Because we have exact arrival times, yet
want to train the network to recognize events anywhere in the window, we introduce a time buffer into some events between the start of the
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Figure 3: Training curve of the CNN, accuracy vs. steps.

We separate the dataset into a primary training set, used above, and a distinct validation dataset that we do not use to train, but use to validate
performance. Generally, for most stations we use data from 01/13/11 00:00 to 01/15/11 00:00 for validation. This gives sufficient signal events
to accurately measure performance on a distinct set of data. We have both a signal and a noise validation set. Detection accuracy is the metric

Figure 4: Detection accuracy of noise (purple ) and signal events (blue).

Initially the untrained network makes blanket predictions of all noise, then performance for signal and noise validation events stabilizes.

5. Results

To measure performance, we run the trained CNN on streaming data and compare the results to expert picked event catalog. Our network
requires 10 second windows, and we employ two methods to prevent potential overlap of signal events between consecutive windows.
First, we choose windows every 11 seconds, creating a one second gap between consecutive windows the network sees. Second, we count
as a successful picks any 10 second windows in which there is an event from t = -3 s to t = 10s. This scheme is illustrated below.
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Although we do have this curated event catalog with expert picked arrivals, it still may be challenging to understand results other than true
positive arrivals labeled by the network. To address this in the future, we plan to compare with other established detection methods.
Additionally we plan on examining potential false positive and false negative events to expert analysts to verify a lack of signal in the

data.

As mentioned above, the computational performance of neural networks is generally superior to traditional methods of detection. Our
network runs on two weeks of streaming data in under three minutes for one station.

Confusion matrix for NN detections for various stations compared to expert picked arrivals

1s Primary 10 Second Window 1s

Gap

MTPU

BRPU

Detections

True Missed True

Missed True Missed True Missed

True 307 366 TBD

TBD TBD

False 137 109,823

True Detections

Precision = - -
True Detections + False Detections

True Detections

Recall = - -
True Detections + Missed Detections

6. Conclusions

1. CNN provide a fast and scalable way to detect earthquakes from
raw 3 component waveform data.

2. When applied to an expert picked dataset, the ConvNetQuake
architecture has comparable performance.

3. Further training on large datasets is likely to improve
performance, especially at lower magnitudes.

7. Future Work

1. Validate arrival picks with various other arrival detection
techniques to better understand performance.
2. Examine false positive and false negative events to understand
CNN outputs.
. Move to spectrogram image inputs.
4. Explore various neural network architectures and training
methods to understand if increased performance is possible.
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