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EM GEOPHYSICS: A NIGHTMARE SCENARIO

Electromagnetic geophysics in culturally cluttered
environments is well known to be problematic:

» Thin, strong conductors that are difficult to model
* Nuisance, active noise sources
» Complex coupling between target and clutter

Example: Kern River Oilfield
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31 A HIERARCHICAL FINITE ELEMENT METHOD

Hanging the material properties on the tets, faces and edges of the unstructured
tetrahedral mesh allows for thin conductors to be economically represented by
facets and edges, rather than 100s of millions of tiny tets.
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a1 ASSEMBLY AND SOLUTION OF THE LINEAR SYSTEM

Variational formulation: f Vo - (o-Vu) dz® = f of dx® Weiss, Geophysics, 2017
Q 49

Hierarchical model:

3D inner products
collapse to 2D and 1D
inner products

Global stiffness
matrix is a sum of
3D, 2D and 1D
element stiffness
matrices.
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Solve iteratively with Jacobi scaled

Ny Nr Ng conjugate gradients and on-the-fly
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s 1 EXAMPLE: CASING AND SURFACE INFRASTRUCTURE

ACTIVE OIL FIELD SIMULATION
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| : Weiss and Wilson, SEG, 2017

122 cased wells, 300 m deep !
5 km surface pipes

~35 km pipeline/casing modeled at 10 m grid spacing: 3500 elements

Traditional FEM requires ~7e6 elements per km of pipline/casing.

HFEM decreases computational burden by ~4 orders of magnitude in this example (10 min vs 2 mo, estimated runtime)



NEUMANN SERIES EXPANSION: CONTINUOUS CASE

Choose o( such that the Poisson Eq is easy to solve: —V - 0¢gV¢pg =V - Jg

Potential ¢ is therefore a sum of the zeroth order potential ¢o and a residual, ¢V :

db=cdo+oY V.oV =V (6 —0y)Veo

Expand the residual gb(l) as ¢1 + gb(2) such that =V - 0gVep1 =V - (0 —0¢)Vog

Now ¢V = 1+ ¢ = & = go + ¢1 +¢? and —V-oVe!? =V (0 —00) Vg,

In general. ..

—V°O'0v¢7; =V- (O—O'o)v¢i_1 V 1= 1,2,...,N
N
o) = oy + oV 1 ¢ = Z ¢ + Nt V.oVt = V. (6 — 09)Von
1=0

If 0 — o( represents the change in state of the subsurface, the sum

N
6—do= ¢+t
1=1

represents the corresponding change in electric potential.




NEUMANN SERIES EXPANSION: DISCRETE CASE

Discrete form of the easy-to-solve model... Kgyxg=1>

nodal values of ¢g — xg r =z + xV

Let K represent the discrete Poisson operator for the “full” model o

Solve for residual, Kz = §K xryg with 0K =K — K,

Next level of recursive iteration... Kz, = 0K x

2z = xr1 + ) - = o+ 1+ z? with Kz® = 6K T

3™ recursive term for discrete ¢ residual for i*

xXr;, = (Kal(SK) r,_1 — (Kal(SK)Z o CU(Z) = <K_15K) r,—1 = <I<_1(SI<>Z Lo

b recursive term.

The N-term Neumann series. ..
x=xo+ (To+ T+ +T)zo + ™t T, = K; 'K
VT = (T +T? 4 -+ TV) x T = K 10K




FE ENGINE TO COMPUTE TIME-LAPSE FRACTURE RESPONSE

1 A source
I AIR
s EARTH
< e 0=0.01 S/m
X o
'z S fractures, s
] o s 9¢
= 100 m (W) x 40 m (H)
(=P]
3 A 4
200m <>
, 30m R
1000 m

Choose the “easy-to-solve” model to
be the EARTH+CASING.

Full model includes the fractures.

NS is therefore an expansion about i = _ Wel| Casing |

the fracture conductivity anomaly. ~
£ Weiss and van Bloemen Waanders, Geophysics, 2018
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FE ENGINE PERFORMANCE

Representative PCCG Convergence
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NS CONVERGENCE W

10
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ESTIMATING SPECTRAL RADIUS OF THE NS

11

Neumann series is convergent if max eigenvalue A,y for Tg is < 1.

Use power method (Saad, 2011) to approximate eigenvector v associated with Apyax.

dominant eigenvector, v

v is approximated by successive iterates, v
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EFFECT OF MESH SIZE ON SPECTRAL RADIUS

12

Neumann series is convergent if max eigenvalue A,y for Tg is < 1.

Use power method (Saad, 2011) to approximate eigenvector v associated with Apyax.

6 -
v is approximated by successive iterates, v —1.13
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Letting h denote mean node spacing for g
discretized fractures. .. ol ‘
spectral radius is singular in the continuum limit. | | T
2.0 6.0
.. NS is intrinsically divergent, regardless of mesh size, h [m]

fracture anomaly smallness.

Weiss and van Bloemen Waanders, Geophysics, 2018



131 VALIDATION AND VERIFICATION (VnV)

Method of Exact Solution
When the exact solution is known for a given Earth model
and source, compare it with FE solution.

Electrostatic Potential and Finite Element Mesh

MES1: dipole in a wholespace
MES2: dipole on a halfspace with a thin conductive sheet.

validation and verification

MES2 response

Method of Manufactured Solutions

W
§ | IxFP — xEXACT||2 Posit an analytic solution and than algebraically .solve
o —4.0 £ = 2, for the sourcing term. Compare it with FE solution.
- N
st . MMS: choose: ¢ = exp {— (r/a)ﬂ and o = constant
-5.0F MES1
—23F * Convergence Analysis: hierarchical FE error
60kl 1 1 convergence consistent with classical FE.
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logioh
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141 CONCLUSIONS AND PATH FORWARD

We test the convergence of Neumann series as a potential method for rapid
evaluation of electrostatic response of a fracture/infrastructure model.

Neumann series was computed using the hierarchical finite element method due to
its ability to economically represent steel borehole casing and fractures.

Neumann series expansion was computed about the fracture anomaly, thus
representing a time-lapse or change-detection modeling scenario.

For a fixed finite element discretization, the Neumann series was convergent if the
fracture anomaly was sufficiently small...

... but this was proven to be a discretization artifact. Eigenvalue and VnV analyses
show that, for this problem, the Neumann series is intrinsically divergent, regardless
of anomaly smallness.

This effect was due to the strong coupling electrostatic between the fracture and
steel borehole borehole casing.

Further investigation is required to quantify a “coupling threshold” below which the
Neumann series could provide adequate responses.




