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INTRODUCTION

Nuclear fuel reprocessing plants face significant
economic challenges in meeting security, safeguards, and
environmental regulations. Directly addressing these
problems later in the design process coupled with overly
conservative designs can lead to higher operational and
upfront costs. Safeguards are just one component, but
future advancement of reprocessing technologies will
require efficient accountancy and plant monitoring
approaches. These approaches will be required for both
domestic and international safeguards. On-line
monitoring of bulk processing facilities is preferred as
compared to grab sampling and destructive analysis
which can lead to longer turn-around-times and higher
costs. Many on-line measurement technologies exist, but
the complex radiation environment and higher
measurement uncertainties for actinides limits their
effectiveness. This work is examining how machine
learning techniques can be used to develop safeguards
systems that operate predominantly through on-line or
non-destructive measurements.

BACKGROUND

Safeguards requirements for bulk processing facilities
can be difficult to meet due to the high throughput of
fissionable material. A 1000 MT/yr reprocessing plant
can process over 10,000 kg of Pu annually. For a one-
month balance period, measurement uncertainties are
needed in the <0.5% range in order to meet loss detection
goals for a significant quantity. As a result, accountancy
systems typically rely on sampling and destructive
analysis (which must be performed in a laboratory) in
order to meet the goals. This is true for both domestic
and international safeguards requirements.

However, measurement technologies and data
analytics approaches are constantly evolving. Recent
research on spectroscopy for aqueous reprocessing
facilities shows that accountancy goals can be achieved
using only on-line spectroscopic probes along with bulk
level measurements and flowmeters [1]. Past work has
also explored the use of multi-variate data for advanced
process monitoring of fuel cycle facilities [2,3,4]. These
approaches need to be tied together more, and machine
learning algorithms have promise in developing the work.

A difficulty with machine learning is that its
implementation is not usually intuitive or transparent.
This is a problem for safeguards in which transparency to
the regulator is important. Data analytics cannot be

overly complex in order to provide assurance that all
material is accounted for and that facilities are not being
misused. Inspectors and regulators need to be able to
easily understand any data analytics approach.

This summary provides a methodology for how on-
line monitoring technologies and machine learning can be
used to develop a more efficient safeguards approach for
future facilities. Particular attention is focused on how to
make these systems transparent enough to be accepted by
a regulator. Modeling and simulation is being used to
demonstrate the concept.

OPERATOR VS. REGULATOR

While an advanced safeguards approach is feasible
for a new facility, retrofits to existing facilities would be
difficult. This paper assumes that the operator of a new
facility will utilize as many on-line measurements as
possible. The inspector goal is to verify declarations with
as much reliance on unattended measurements as possible
and a limited number of non-destructive verification
measures.

A new aqueous reprocessing plant will likely make
use of the latest precision level and flow measurements
along with UV-Vis-NIR spectroscopy for on-line
measurement of actinides. The use of that measurement
data, though, may be problematic for the regulator due to
the need for an optical probe in the hot cell, maintenance
considerations, and the fact that spectroscopy to measure
actinides utilizes detailed chemometric models for
calibration. The international inspector may want to rely
on a measurement technology that is easier to install and
maintain.

The value of the machine learning approach is to help
the regulator to use a great deal of operator-declared data,
along with a minimal number of on-line verification
measurements, to make a transparent and justified
safeguards conclusion.

MODELING

The on-line measurements and data analytics
approaches considered here were tested using the
Separation and Safeguards Performance Model (SSPM)
[5]. The SSPM uses Matlab Simulink to simulate the
material flow, operations, and measurements in a bulk
processing facility. Various versions of the SSPM exist to
cover different types of facilities and throughputs. For
this work, a 1000 MT/yr PUREX reprocessing plant
model was used.
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Figure 1 shows the PUREX model in Simulink The
gray blocks represent the major unit operations. The
signals connecting the blocks represent material flows—
the models are designed to track all elements, bulk liquid
or solid flow rates, and isotopics. The blue blocks
represent operator measurement points, but the level
measurements are not shown on this level. The green
blocks represent verification measures that the inspector
may use. Finally, the red blocks are points where
diversion scenarios can be turned on to determine how the
safeguards system responds. Although the SSPM
contains significant detail to mimic the timing of
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reprocessing operations, it was designed to study
safeguards systems and approaches.

Past work has set up the safeguards system to be
representative of an existing facility. This allows for a
baseline to compare against when investigating new
approaches. Current best practices for statistical analyses
are worked into the SSPM, but the machine learning
techniques are currently performed outside of Matlab
Simulink Eventually, these techniques could be added to
the SSPM, but for now, it is easier to use the SSPM to
produce data sets that can then be examined externally
using PYTHON.
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Figure 1: PUREX Safeguards Model

The assumption behind the approach is that the
operator will utilize on-line measurements for both
process monitoring/control and for their declaration of the
material balance. Periodic calibration will be required in
which grab samples will be analyzed, but the operator will
rely mainly on precision level measurements, flowmeters,
and spectroscopy for materials accountancy.

The goal of the data analytics concept is to allow the
inspector to verify the declaration without requiring grab
samples and destructive analysis (or by significantly
reducing the need for sampling). The inspector may
utilize joint use level measurements on key product tanks
since that has already been demonstrated as part of the
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Rokkasho Reprocessing Plant safeguards approach [6].
Measurements using NaI detectors are assumed for
accessible pipes in a few select other locations. The
machine learning algorithm will correlate all the data to
determine if the declaration looks correct or falsified.

Joint use level measurements can easily be used to
detect direct material loss since these measurements can
have low uncertainty (0.1%). Additional nuclear
measurements are needed to detect substitution loss. A
substitution loss is when an insider or nation state diverts
material and tries to hide it by replacing it with a
surrogate. For example, Pu nitrate solution may be
replaced with U nitrate in order to "beat" the bulk
material balance. The nuclear measurements must be able
to detect evidence of a substitution. They do not



necessarily need to be able to quantify actinide loss, as
long as they can indicate a problem. In this manner, the
system is used to alert that sampling and detailed analysis
may be needed.

As indicated in Figure 1 above, gamma spectroscopy
is assumed to be used for the verification. NaI detectors
are limited in the lowest measurement uncertainty that can
be achieved for directly measuring U and Pu. However,
the measurement uncertainty for determining if a
substitution diversion has occurred could be much lower.
The drop of a particular peak or change of a peak ratio
may be measured with more precision than directly
estimating U or Pu content. A machine learning
technique should be able to be trained to pick up such an
event.

Modeling gamma spectroscopy is made possible by
the full isotopic tracking in the SSPM and coupling with
the GADRAS (Gamma Detector Response and Analysis
Software) tool [7]. GADRAS allows for the simulation of
gamma spectra using a variety of standard detector types.
While NaI detectors are currently being examined,
portable high purity germanium detectors will also be
considered in the future.

MACHINE LEARNING APPROACH

The PUREX SSPM is being used to generate a large
amount of nonnal plant operating data. The model is set
up to randomize the fuel feed going into the plant in order
to provide natural variation. This data is being used to
train a machine learning algorithm.

A One-Class Support Vector Machine (OCSVM) was
chosen for this application [8]. The OCSVM is an
unsupervised machine learning technique that can be
trained with normal plant operational data only. (This is
important because an actual facility will not realistically
be able to provide off-normal data for training, so
supervised machine learning techniques are not
desirable.) The OCSVM can take any number of input
data streams and generate a boundary around that normal
data such that some defined percentage of points (say
95%) fits inside it. Then during operation, the OCSVM
will take the measurement data and generate a
classification of 1 (normal) or -1 (off-normal) at each
point the calculation is applied. An alarm is reached
when a certain frequency of off-normal classifications
occurs.

Figure 2 illustrates how the OCSVM technique works
and shows an example of results during an abrupt
diversion. There will be some misclassifications during
normal operation, but a material loss is indicated by a
significant increase in the number of misclassifications.
The bulk of the technical work is on optimizing the
parameters to balance sensitivity with false alarm
probability.

For the application here, the key inputs will be the
level measurements from the joint use equipment and the
data from the gamma spectroscopy of the inputs and
outputs. This also may be coupled with the operator-
declared data.

Past work has shown that the level measurements by
themselves can easily detect direct loss, even for fairly
protracted diversion scenarios. A machine learning
algorithm is not needed for that case since the loss can be
detected with a simple bulk material balance. The
OCSVM is mainly there to detect the substitution
diversions. The OCSVM is looking at a correlation of all
the bulk data along with gamma spectra from some select
locations to look for inconsistencies. Substitution
diversions will alter the gamma spectra in ways that
would be indistinguishable in a traditional Pu balance, but
detectable using a properly trained machine learning
algorithm.

DISCUSSION

This paper was focused on setting up the
methodology, but much more work is needed to test the
concept under a variety of conditions. Initial work on the
concept was applied to a generic pyroprocessing
safeguards approach. The OCSVM technique showed
promise, and so was applied to aqueous as well. Further
work is needed to fine tune the algorithm to optimize
performance.

Of particular interest in this work is the ability to
present the data and algorithm in a way that will be more
transparent to an inspector or regulator. For example, the
test may be set up so that in the case of an increase in
misclassifications, the program will pull up the gamma
spectra or bulk measurements that are most responsible
for the misclassification. This would allow the inspector
to rapidly determine the problem and location. Future
work will present more detailed results and a comparison
against current best practices.
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Figure 2: Illustration of the OSCVM Technique
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