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2 I The Standard Theory of Ductile Rupture

Garrison and Moody, JCPS, 1987

Ductile rupture = failure by. microvoid coalescence

Three steps:

1. Voids nucleate at “inclusions” or other hard particles

2. Void grow via plastic deformation
o Grow rate typically described in terms of Rice-Tracey
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3. Rupture occurs when microvoids coalesce

Wildly successful, but still outstanding questions and unexplained observations:
> How do voids nucleate in pure metals?

° How do voids nucleate in shear-dominated loading?

> What micromechanical processes undetlie void growth? How do we expect the micromechanics of growth
to affect the rupture process?




3 I Void nucleation in pure metals
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Consistent feature: voids tend to nucleate at

dislocation boundaries/cell walls, but not those
with the high misorientation
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Micromechanics of void growth
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Dislocation nucleation

Chang et al., Scripta Mater. 2015
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Mayor outstanding questions:
o Fundamental dislocation-void interactions?
° Relationship to nucleation-mediated growth?

o (Growth rate as a function of stress?



Graphics made with OVITO
5 | Dislocation-void interactions under hydrostatic stress
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Screw dislocation in FCC Al Glides, cross-slips, glides,... ...cross-slips, glides, cross-slips...

No volume change to insert a screw dislocation!

)V = / b - dA Hirth and Lothe, 1992
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Bulatov et al., Scripta Mater., 2010

Growth 1s controlled by glide and cross-slip of pre-existing dislocations
> Enables growth without high stresses
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6 I Influence of pre-existing dislocations on stress-strain curve
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Void growth rates

Can we make a meaningful comparison with Rice-Tracey?

> Can’t do a one-to-one comparison because of boundary condition issues, but...
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Adsorption-mediated growth obeys exponential scaling!
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Implications and future work

Lower dislocation densities require higher hydrostatic stresses

> Recent experiments show that dynamic recrystallization in Al suppresses rupture (Noell et al., In
Preparation)

Voids should exist in regions with enough dislocation content to accommodate growth
> Observe that voids most commonly appear in dislocation boundaries/walls

Even in materials with inclusions, local dislocation content will affect void nucleation/growth

Coupling adsorption-mediated growth with vacancy condensation (Cuitino and Ortiz, Acta Mater.,
1995) may explain void nucleation in pure metals

Future work:
> Extend findings to lower stresses, lower dislocation densities — DDD collaboration with Wer Cat at Stanford
> Quantify influence of various dislocation processes (bulk cross-slip, surface cross-slip, glide, climb)






10 ‘ MD case study 2

Cross-slips, recombines, and glides away

Glides towards and collides with void

Prismatic loop in FCC Al



11 Universal stress-strain curve

Simulation with fixed number of atoms
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