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2 I The Standard Theory of Ductile Rupture

Ductile rupture = failure by. microvoid coalescence

Three steps:

1. Voids nucleate at "inclusions" or other hard particles

2. Void grow via plastic deformation

Grow rate typically described in terms of Rice-Tracey

—
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= a exp
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R 2o-y

3. Rupture occurs when microvoids coalesce

Garrison and Moody, JCPS, 1987
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Wildly successful, but still outstanding questions and unexplained observations:

o How do voids nucleate in pure metals?

o How do voids nucleate in shear-dominated loading?

o What micromechanical processes underlie void growth? How do we expect the micromechanics of growth
to affect the rupture process?



3 Void nucleation in pure metals

99.999% Cu
"0.

Tensire dirnplef

99.99% Al

99.9% Ta

Boyce et al., Met. Trans. A., 2017

Consistent feature: voids tend to nucleate at
dislocation boundaries/cell walls, but not those
with the high misorientation 1



4 I Micromechanics of void growth

Marian et al., PRL, 2004

Bringa et al., Acta Mater., 2010
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Only relevant for high stress loading!

Dislocation nucleation

Chang et al., Scripta Mater. 2015
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Major outstanding questions:
o Fundamental dislocation-void interactions?

O Relationship to nucleation-mediated growth?

O Growth rate as a function of stress?
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5 Dislocation-void interactions under hydrostatic stress

Screw dislocation in FCC Al

No volume change to insert a screw dislocation!

Glides, cross-slips, glides,... ...cross-slips, glides, cross-slips...

(5V = b • dA Hirth and Lothe, 1992
Bulatov et al., Scripta Mater., 2010

Growth is controlled by glide and cross-slip of pre-existing dislocations
o Enables growth without high stresses

1



6 I Influence of pre-existing dislocations on stress-strain curve

No pre-existing dislocations
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Hydrostatic strain, EH

Stress drop associated with dislocation nucleation goes away as the
initial dislocation density increases

o Post-yield, results converge together...

Even when system is initially dislocation-free, growth is controlled by
dislocation adsorption!



7 I Void growth rates
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Can we make a meaningful comparison with Rice-Tracey?

Can't do a one-to-one comparison because of boundary condition issues, but...
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Adsorption-mediated growth obeys exponential scaling!

R

R
= A(p) exp (4.4aH)
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8 I Implications and future work

Lower dislocation densities require higher hydrostatic stresses
O Recent experiments show that dynamic recrystallization in Al suppresses rupture (Noell et al., In
Preparation)

Voids should exist in regions with enough dislocation content to accommodate growth
Observe that voids most commonly appear in dislocation boundaries/walls

Hven in materials with inclusions, local dislocation content will affect void nucleation/growth

Coupling adsorption-mediated growth with vacancy condensation (Cuitino and Ortiz, Acta
1995) may explain void nucleation in pure metals

ater.,

Future work:
o Extend findings to lower stresses, lower dislocation densities — DDD collaboration with Wei Cai at Stanford
o Quantify influence of various dislocation processes (bulk cross-slip, surface cross-slip, glide, climb)





10 I MD case study 2

Prismatic loop in FCC Al Glides towards and collides with void Cross-slips, recombines, and glides away



11 I Universal stress-strain curve

Simulation with fixed number of atoms
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