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2 I Relating microstructure to mechanical properties

A key goal of mesoscale modeling is to relate microstructure to mechanical properties

The prime example is the Taylor relation

Mechanical property---- T = (4/1W7)

But how does dislocation density p evolve with strain ry ? This controls the hardening rate via:
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Discrete dislocation dynamics (DDD) is a tool that can link microstructure with properties

Dislocation Properties
• Junctions
• Cross-slip
• Climb rate

Microstructure
• Dislocation networks
• Patterning

Mechanical Properties
• Yield strength
• Hardening rate
• Creep rate



3 I Discrete dislocation dynamics simulations

Single crystalline Cu

15 pi,m box with periodic boundary conditions

Initial dislocation densities — 1012 m-2
Relaxed straight lines, no pinned sources

Strictly enforced glide planes

° No cross-slip

New subcycling-based time integrator with GPU
implementation
° Achieve 1% shear strain in —1 day on 1 GPU,
compared with >30 days on >500 CPUs

DDD simulations of [001] loading reproduce
quasi-static hardening rate and obey Taylor
relation
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*Collaboration underway with K. T. Ramesh at JHU to
perform high strain rate experiments on Cu single crystals



4 I Link length distribution

A number of theorist have proposed that the link length
distribution is an important feature of the dislocation network
° Lagneborg and Forsen, Acta Met., 1973; Gasca-Neri and Nix, Acta
Met., 1974; Ardell and Przystuda, Mech. Mater., 1984

Define distribution function n(L) such that

00
N = n(L)dL

cc
p = J Ln(L)dL

Number density of links

Dislocation density

Our simulations show that to a good approximation:

n(L) = Op2 exp (— -\/ pL)

where

L-
N Average link length
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Stable junction /
formation probability

5 I Origin and consequence of the exponential distribution

Exponential distributions are hallmarks of 1D Poisson
point processes

This means junction formation is spatially random

So what... let's assume that:

17 = 20pfo = 2ßpf P.b  )/

Forest density

pf=fp

The exponential distribution says that:

N = 01/2p312

Combining these together reveals that:

40 f P'y
  P  P
3b,\/, , 30

= Ki\/To — K2p

*Interesting aside: looks like Kocks-Mecking!
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Junction formation
controls multiplication
and strain hardening
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6 I Which junction contributes most to strain hardening?

'Junction Turn off different junctions
in DDD and see the effect
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7 I Summary

DD simulations can now predict (Stage II) strain hardening rate in [001]
loading consistently

Dislocation segment length is exponentially distributed in [001] loading

Exponential distribution can be explained if junction formation is a
spatially random (Poisson) process

Exponential distribution predicts that junction storage rate fi is
proportional to strain hardening rate

Dislocation Microstructure Property

 ►ir[7:(L p2 exp OpL)
dr

d7

R. B. Sills, N. Bertin, A. Aghaei, and W. Cai, Phys. Rev. Lett. 121, 085501 (2018)
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9 Extra figures

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0.5 1
Shear strain (%)

1.5 2

60

40

20

c"-ii'
o_

0
c.ip

—20

—40

—60
—60 —40 —20 0 20

ti (MPa)

Lomer
Glissile
Hirth
Collinear

40 60

FIG. 5. Example of junction strength maps computed for the
four types of FCC junctions resulting from the intersection
of two dislocations with initial orientations wl = cp2 = 30°
with respect to the junction direction. Results are reported
for core radii re = 6b (solid lines) and re = 200b (dashed
lines).



10 I Evidence for exponential distribution
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