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Relating microstructure to mechanical properties

A key goal of mesoscale modeling is to relate microstructure to mechanical properties

The prime example is the Taylor relation
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But how does dislocation density p evolve with strain v ? This controls the hardening rate via:
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Discrete dislocation dynamics (DDD) is a tool that can link microstructure with properties

DISlOCGt.IOn Properties Microstructure Mechamcal Properties
» Junctions * Yield strength

« Cross-slip — Dis'acation networks | « Hardening rate

« Climb rate * Patterning * Creep rate




Discrete dislocation dynamics simulations

Single crystalline Cu

15 um box with periodic boundary conditions

Initial dislocation densities ~ 1012 m-2

> Relaxed straight lines, no pinned sources

Strictly enforced glide planes
> No cross-slip

New subcycling-based time integrator with GPU
implementation

> Achieve 1% shear strain in ~1 day on 1 GPU,
compared with >30 days on >500 CPUs

DDD simulations of [001] loading reproduce
quasi-static hardening rate and obey Taylor
relation
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*Collaboration underway with K. T. Ramesh at JHU to
perform high strain rate experiments on Cu single crystals



Link length distribution

A number of theorist have proposed that the /Znk length
distribution 1s an important feature of the dislocation network

> Lagneborg and Forsen, Acta Met., 1973; Gasca-Neri and Nix, Acta

Met., 1974; Ardell and Przystuda, Mech. Mater., 1984

Define distribution function n(L) such that
O
N = n(L)dL Number density of links
0
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Dislocation density

p= /O Ln(L)dL

Our simulations show that to a good approximation:

n(L) = ¢p* exp (—\/%L)
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Yaghoobi (Scripta Mater., 2017)
in MD simulation of Ni
nanopillar compression



Origin and consequence of the exponential distribution

Exponential distributions are hallmarks of 1D Poisson

point processes

° This means junction formation 1s spatially random

So what... let’s assume that:

2Bpy |
= 20pypv = —fv

Stable junction / \

formation probability Forest density

pr=1rp
The exponential distribution says that:
N = ¢/2 32

Combining these together reveals that:
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*Interesting aside: looks like Kocks-Mecking!

Junction formation
controls multiplication
and strain hardening
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£ ~=0.042 i.e. only 4.2% of collisions leads
to stable junctions - dislocation storage



6 I Which junction contributes most to strain hardening!?

I Junction

A
=R

Number of possible junctions per slip system

Turn off different junctions
in DDD and see the effect
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Collinear junction is strongest (largest 55)
Glissile junction has more ways to form (largest 1)



Summary

DD simulations can now predict (Stage II) strain hardening rate in [001]
loading consistently

Dislocation segment length is exponentially distributed 1n [001] loading

Exponential distribution can be explained 1if junction formation is a
spatially random (Poisson) process

Exponential distribution predicts that junction storage rate 5 1s
proportional to strain hardening rate

Dislocation Microstructure Property

Br——>n(L) = ¢p° exp (—@L) Z;

R. B. Sills, N. Bertin, A. Aghaei, and W. Cai, Phys. Rev. Lett. 121, 085501 (2018)
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Extra figures
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FIG. 5. Example of junction strength maps computed for the
four types of FCC junctions resulting from the intersection
of two dislocations with initial orientations ¢1 = @2 = 30°
with respect to the junction direction. Results are reported
for core radii r. = 6b (solid lines) and r. = 200b (dashed
lines).



10 | Evidence for exponential distribution
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