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Possible mechanisms

Changes in solid stress
due to fluid extraction or injection
(poro-thermoelastic effects,

Direct fluid pressure changes in gravitational loading)
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N pressure along

fault (requires Change in loading
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(Ellsworth, 2013)
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Coulomb stress change ) S,

At = At + f(Ao,, + Ap)
\ )
v

Effective
stress

(+) for tension

At = shear stress change
Ao, = normal stress change
Ap = pore pressure change

f =failure friction coefficient

= (+) values of each quantity imply that the fault plane

is moved closer to failure
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Coulomb stress change ) S,

At = (At + fAo,) + fAp
\ )

\ )

! ! (+) for tension
Poroelastic Pore
stress pressure

At = shear stress change
Ao, = normal stress change
Ap = pore pressure change

f =failure friction coefficient

" |nthe uncoupled system, poroelastic stress term

goes to zero (neglecting mechanical behaviors)
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Seismicity rate estimate =

dR _R(t
dt t,\7,

t, = characteristic decaying time

(Segall & Lu, 2015, JGR)

= R isthe seismicity rate relative to an assumed prior
steady-state seismicity rate at a background
stressing rate
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Model scheme: 3-D ) s

Domain: 5 x 5 [km]
Confining: 0.2 [km]
Reservoir: 0.025 [km]
Basement: 1 [km]
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= |njection for 30 days with constant injection rate
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(Chang & Yoon, 2018, JGR)

= Nearest conductive fault (fault 1) experience the most
increases in pore pressure

= Along the sealing fault (fault 2), the poroelastic response
generates -Ap or +Ap corresponding to well operation.

= The conductive fault (fault 3) has post shut-in increase in
Ap due to delayed diffusion.
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= Along the sealing fault (fault 2), the extensional stress

caused by the reservoir expansion gives +(Ats + fAcn) in
the upper fault zone.

= Both conductive faults experience -(Ats + fAcn) by
reacting to the pressure buildup within the fault zone.
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= Direct diffusion gives +At along the conductive faults.
= Poroelastic stressing causes +At along the sealing fault.
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Results: uncoupled model ) .

Fault 1 (conductive) Fault 2 (sealing) Fault 3 (conductive)
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= Nearest conductive fault (fault 1) experiences significant
pressure buildup

= Along the sealing fault (fault 2), almost no diffusion of
pore pressure is observed.

= The conductive fault (fault 3) has post shut-in increase
due to delayed diffusion.




Results: uncoupled model ) .,
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= Mechanical response is neglected, so direct pore-pressure
diffusion is the only mechanism to induce seismicity.

= The maximum R is observed at the uppermost fault zone
corresponding to the pore-pressure propagation.




Results: uncoupled model ) .,
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Seismicity magnitude estimate ) .

(1.5 — b)
Momax = b 2fKAV

K = drained bulk modulus

(McGarr, 2014, JGR)

b = GR frequency-magnitude relation
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Seismicity magnitude estimate ) S

(1.5 — b)
Momax = 2fKAV
b (McGarr, 2014, JGR)
K = drained bulk modulus
(1.5 — b) 2f
MO,max — b S AV

(Chang & Yoon, 2018, JGR)

1/S = Biot's modulus




Seismicity magnitude estimate ) .

(1.5 — b)
Momax = b 2f KAV
(McGarr, 2014, JGR)
Estimate K = drained bulk modulus
based on AV
" (15-b2f
Oomax — b S
(Chang & Yoon, 2018, JGR)
1/S = Biot's modulus
Estimate .
based on u MO,max — Gf udA
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Results: seismicity magnitude ) .,

Seismic moment (M, N-m)

Governing Seismic Maximum magnitUde (MW,max")
parameter TOmEnL
relation Overall Fault 1 Fault 2 Fault 3
formation
1.08 x 1012
McGarr 1.99
AV
1.66 x 1012

Chang & Yoon )11

1.78 x 1011 1.20 x 1011 1.04 x 10
1.47 1.35 1.31

2
MW = § [loglo MO — 905]
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Conclusions ) i

= |n the poroelasticity system, pore-pressure diffusion
and/or poroelastic stressing can induce seismicity along
faults of any hydraulic type.

= The location of induced seismicity can vary depending on
fault properties due to the poroelastic effect.

= The 3-D modeling captures properly the hydraulic and
mechanical interaction between faults and surrounding

formations.
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Seismicity along the basement fault @&
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= |njection-induced earthquakes occur
along the fault within the basement.
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In-situ fault structure )

FAULT ARCHITECTURE IN THE MINA RATONES AREA
SE View

North Fauwlt

(Escuder-Viruete et al., 2003)

= Geological characterization of the faulting system shows
the complexity of the fault-zone structure embedded in a
multi-layered system
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Poroelastic coupling ) S,

Pore pressure change Rock deformation

= Stress equilibrium

V- [G(x)Vu] + \7[ Glx)

1-2v(x)

]V-u—a(x)Vp+f:O

=  Diffusion

dp 1 9]
S0 5 =5 7 kGIPp] = ~a() 3.7 - w) + Qo)




Poroelastic coupling

= Stress equilibrium

7 [GGOTul +7 | Gix)

1-2v(x)

=  Diffusion

Pore pressure change | g
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Rock deformation

]V-u—- a(x)Vp

+f =0

9]
SGO) 22~ 7 - [k(x)Vp] =

0
—a(x)a(V *U)

n

+ Q(x,t)




Results
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