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Coulomb stress change

AT = ATs + f (Aan + Ap)

(+) for tension

Effective
stress

Ars = shear stress change

Ao-, = normal stress change

Ap = pore pressure change

f = failure friction coefficient
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• (+) values of each quantity imply that the fault plane
is moved closer to failure
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Coulomb stress change

AT = Ws + f MT") + rAp
tm)

(+) for tension

Poroelastic Pore

stress pressure

Ars = shear stress change
Ao-, = normal stress change

Ap = pore pressure change

f = failure friction coefficient

• In the uncoupled system, poroelastic stress term
goes to zero (neglecting mechanical behaviors)
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Seismicity rate estimate

dR  R ( t

dt ta '-t-.0 R)
(Segall & Lu, 2015, JGR)

ta = characteristic decaying time

• R is the seismicity rate relative to an assumed prior

steady-state seismicity rate at a background

stressing rate

Sandia
National
Laboratories

5



Model scheme: 3-D

Domain: 5 x 5 [km]
Confining: 0.2 [km]
Reservoir: 0.025 [km]
Basement: 1 [km]

■ Injection for 30 days with constant injection rate
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Results
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• Nearest conductive fault (fault 1) experience the most

increases in pore pressure

• Along the sealing fault (fault 2), the poroelastic response

generates -Ap or +Ap corresponding to well operation.

• The conductive fault (fault 3) has post shut-in increase in

Ap due to delayed diffusion.
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Results
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• Along the sealing fault (fault 2), the extensional stress

caused by the reservoir expansion gives +(A-cs + fAcyn) in

the upper fault zone.

• Both conductive faults experience —(ATs fAcyn) by

reacting to the pressure buildup within the fault zone.
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Results
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• Direct diffusion gives +AT along the conductive faults.

• Poroelastic stressing causes +AT along the sealing fault.
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Results
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Results: uncoupled model
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• Nearest conductive fault (fault 1) experiences significant

pressure buildup

• Along the sealing fault (fault 2), almost no diffusion of

pore pressure is observed.

• The conductive fault (fault 3) has post shut-in increase

due to delayed diffusion.



Results: uncoupled model

fAp = AT
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• Mechanical response is neglected, so direct pore-pressure
diffusion is the only mechanism to induce seismicity.

• The maximum R is observed at the uppermost fault zone
corresponding to the pore-pressure propagation.
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Results: uncoupled model

fAp = AT
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Seismicity magnitude estimate

MO,max

(1.5 — b)

b 
2f KAAV

(McGarr, 2014, JGR)

K= drained bulk modulus

b = GR frequency-magnitude relation
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Seismicity magnitude estimate

MO,max

(1 .5 — b)

b 
2 f K AV

K= drained bulk modulus

MO,max

(McGarr, 2014, JGR)

(1.5 b) 2f Av

b S

1 / s = Biot's modulus
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(Chang & Yoon, 2018, JGR)

15



Seismicity magnitude estimate

Estimate
based on AV

MO,max

(1.5 — b)

b 
2f KAV

K= drained bulk modulus

MO,max b S

(McGarr, 2014, JGR)

(1.5 b) 2f AV
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(Chang & Yoon, 2018, JGR)

1ls = Biot's modulus

Estimate
based on MO,max G f u dA
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Results: seismicity magnitude Sandia
National
Laboratories

Governing
parameter

Seismic
moment
relation
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Maximum magnitude (M.--W,max,-)

Overall
formation

Fault 1 Fault 2 Fault 3

AV

McGarr
1.08 x 1012

1.99

Chang & Yoon 
1.66 x 1012

2.11

u
1.78 x 1011 1.20 x 1011 1.04 x 1011

1.47 1.35 1.31

2
Mw = 3 Pogn Mo 
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Conclusions

■ In the poroelasticity system, pore-pressure diffusion
and/or poroelastic stressing can induce seismicity along
faults of any hydraulic type.

■ The location of induced seismicity can vary depending on
fault properties due to the poroelastic effect.

■ The 3-D modeling captures properly the hydraulic and
mechanical interaction between faults and surrounding
formations.
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Seismicity along the basement fault
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• Injection-induced earthquakes occur

along the fault within the basement.
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In-situ fault structure

FAULT ARCHITECTURE IN THE MINA RATONES AREA
SE View
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• Geological characterization of the faulting system shows

the complexity of the fault-zone structure embedded in a

multi-layered system
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Poroelastic coupling

Pore pressure change Rock deformation

• Stress equilibrium

V • [G (x) V it] + V [1 G 2( vx () x)1 V • u — a (x) V p + f =0

• Diffusion

a p 1 a
s(x)— at — —v • [k(x)Vp] = — a (x) t (V • u) + Q (x , t)77
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Poroelastic coupling

Pore pressure change Rock deformation

• Stress equilibrium

V • [G (x)V it] + 17 [ 
G (x)  1 v 

•
u

1-2v (x) i

• Diffusion

1
s(x)— 

ap 
— —V • [k (x)V p] =at 17

- a (x)V p+ f =0

a
-a(x) —

at 
(vr .1,7)+ Q (x , t)

Sandia
National
Laboratories

24



Results
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