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Criegee Intermediate

Mechanism of Ozonolysis

By Rudolf CriegeeL*1

The formation of ozonides (1,2,4-trioxolanes) from alkenes and ozone can be described
as a succession of three [2 + 3] cycloadditions or cycloreversions involving primary ozonides
(1,2,3-trioxolanes) and aldehyde or ketone oxides as decisive intermediates, all of which have
finite lifetimes. There is no warranted experimental basis for assuming an alterna ive mechanism.

• Significant source of OH in the daytime and major source of nighttime and winter OH - 'tropospheric detergent'.
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The formation of ozonides (1,2,4-trioxolanes) from alkenes and ozone can be described
as a succession of three [2 + 3] cycloadditions or cycloreversions involving primary ozonides

(1,2,3-trioxolanes) and aldehyde or ketone oxides as decisive intermediates, all of which have

finite lifetimes. There is no warranted experimental basis for assuming an alterna ive mechanism.

• Significant source of OH in the daytime and major source of nighttime and winter OH - 'tropospheric detergent'

• Bimolecular reactions of Criegee intermediates also important in the troposphere.

• Low SS concentration from ozonolysis - slow production, fast removal.

• Photolytic generation pathways for CI circumvent this (Taatjes et al., Welz et al.)
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Criegee Intermediates (CI)

•

Bimolecular reactions of Criegee intermediates also important in the troposphere.

Low SS concentration from ozonolysis - slow production, fast removal.

Photolytic generation pathways for CI circumvent this (Taatjes et al., Welz et al.)
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• Direct studies have revealed rapid CI reactivity:

• i.e./ the reaction of C1-CI + S02 (3.4 x 10-11 cm3 s-l) — 10,000 times faster
than previously thought.

• H2SO4 precursor SOA (Cox & Penkett).
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Can Cl reactions can lead to SOA formation ?
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HOM from Criegee Intermediate reactions ?
• ROOH determined to be significant component of SOA (i.e. Docherty et al., Bonn et al.)
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• ROOH determined to be significant component of SOA (i.e. Docherty et al., Bonn et al.)

• CI reactions leading to ROOH production implicated in the formation of SOA (Sadezky et al.,
Sakamoto et al.)

• i.e./ Ozonolysis of ethene: SOA suppressed in the presence of Cl scavenger. Cl-
based oligomers observed in the gas + particle phase. (Sakamoto et al.)

• Sequential addition of Cl into ROOH proposed SOA
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• i.e./ Ozonolysis of ethene: SOA suppressed in the presence of Cl scavenger. Cl-
based oligomers observed in the gas + particle phase. (Sakamoto et al.)

• Sequential addition of Cl into ROOH proposed SOA

• Rate and yield of CI insertion into O-H bond of ROOH calculated to be structure dependent:

• CH200 + HOROOH k N 1 x 10-11 cm3 (Zhao et al.)

• CH200 + H202 k N 3 x 10-13 Crn3 s-1, CH200 + CH300H k — 6 x 10-12 CM3 S-1 (Vereecken et
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• Ether oxide and organic hydroperoxide products predicted - yields dependent on
ROOH and CI structure.
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• Functionalized organic hydroperoxides also formed from Cl + acid reactions.

• CH200 + formic acid. k = 1.1 x 10-10 cm3 s-1 (Welz et al.)

• Formic acid removal enhanced by up to 40% by reaction with Cl.
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• i.e./ Ozonolysis of ethene: SOA suppressed in the presence of Cl scavenger. Cl-
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• Sequential addition of Cl into ROOH proposed SOA

• Rate and yield of CI insertion into O-H bond of ROOH calculated to be structure dependent:

• CH200 + HOROOH k N 1 x 10-11 cm3 s-1 (Zhao et al.)

• CH200 + H202 k N 3 x 10-13 cm3 s-1, CH200 + CH300H k — 6 x 10-12 cm3 (Vereecken et

al.)

• Ether oxide and organic hydroperoxide products predicted - yields dependent on
ROOH and CI structure.

• Functionalized organic hydroperoxides also formed from Cl + acid reactions.

• CH200 + formic acid. k = 1.1 x 10-10 cm3 s-1 (Welz et al.)

• Formic acid removal enhanced by up to 40% by reaction with Cl.

Examine the initial steps towards SOA formation via:

(1) Direct (photolytic) generation of CI: Targeted study of reactions
with characteristic ROOH (H202, tbhp) (MPIMS, time-resolved)

(2) Ozonolysis generation of CI (03 + ethene): Study of subsequent
reaction products (JSR, steady-state) - Nils Hansen, Sandia (Rousso et al )
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3D datasets from MPIMS
• Halocarbon wax coated quartz reactor - typical operating conditions of —1-40 Torr, 300-373 K.
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3D datasets from MPIMS
• Halocarbon wax coated quartz reactor - typical operating conditions of —1-40 Torr, 300-373 K.

• Pulsed photolytic initiation of chemical reaction.

q

4. 02

• Reactants, intermediates and products are continuously sampled via small
pinhole in side wall of quartz reactor.

• Gas enters ionization region via skimmer where it is intercepted by VUV
radiation.

• lons are subsequently detected via orthogonal-acceleration TOF mass
spectrometry - can see all masses at once.

1. High resolution mass spectra (TOF-MS)

2. Time resolved detection (photolysis laser + flow-tube)

Kinetic time
 ►

i „„„„,,„„„„,1 „.„....1.„.„„"„„„"„„„,1„,„„.1.,..„"

0 20 40 60 80 100 120 140 160

m/z



3D datasets from MPIMS
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3D datasets from MPIMS
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Direct kinetics measurements of CI + ROOH
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Observation of insertion products
• High resolution mass spectra: Signal at the exact mlz of Criegee-ROOH insertion products
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Observation of insertion products A
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• High resolution mass spectra: Signal at the exact mlz of Criegee-ROOH insertion products

• Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]
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Observation of insertion products A
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• High resolution mass spectra: Signal at the exact mlz of Criegee-ROOH insertion products

• Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]
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Observation of insertion products
• High resolution mass spectra: Signal at the exact mlz of Criegee-ROOH insertion products

• Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]

• Spectroscopy using tunable VUV
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Observation of insertion products
• High resolution mass spectra.- Signal at the exact m/z of Criegee-ROOH insertion products

• Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]

• Spectroscopy using tunable VUV
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Observation of insertion products
• High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products z
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• Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]
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• Can take a step towards greater chemical complexity by
comparing our observed products with those from ethene
ozonolysis.

• PIE spectra of adduct from direct kinetic studies can also be
compared with ozonolysis studies from JSR experiments also
undertaken at the Advanced Light Source.

• Hansen & Rousso, Sandia

• 300 K, 700 Torr.
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A.C. Rousso„ N. Hansen, A.W. Jasper & Y. Ju, Journal of Physical Chemistry A, (2018), 122(43), 8674-8685.
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Criegee + HMPF: Theoretical investigations
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Insertion products in the field
• Brazil rainforest, June 2016.

• TOF-CIMS (Bannan & Percival, Manchester & JPL) detection of the gas and aerosol phase:
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Insertion products in the field
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Insertion products in the field
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Insertion products in the field
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Time behavior of insertion products follows that of formic acid

Criegee + ROOH products now observed in both direct and ozonolysis lab studies, and the field.

Criegee oligomerization products from ROOH measured in the field in gas and aerosol phase.

What are the potential global atmospheric implications of these reactions for SOA ?



Examining the impacts with modelling
• Calculations of rate coefficient for CH200 + HPMF (from CH200 + formic acid) in progress (Klippenstein, Argonne) - early

indications suggest the reaction is rapid.

• Preliminary global modeling of potential impact of Criegee + ROOH reactions have been undertaken (Khan & Shallcross, Bristol)
using the 3D global chemical transport model STOCHEM-CRI
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Examining the impacts with modelling
• Calculations of rate coefficient for CH200 + HPMF (from CH200 + formic acid) in progress (Klippenstein, Argonne) - early

indications suggest the reaction is rapid.

• Preliminary global modeling of potential impact of Criegee + ROOH reactions have been undertaken (Khan & Shallcross, Bristol)
using the 3D global chemical transport model STOCHEM-CRI.

Up to 50% increase in modelled SOA mass

I 1' '1

Longitude

L 

10.0 1'.0 20.0 3011
Pen:mine change

4( .11 !0.0

9()

bo

-30

-60

-90
- I s

k = 1 x 10-11 cm3

-60
Longitudc

60 170 go

0011 O.ii 0.10 0.20 0.50 1.00
Mass Carcentration (rricrograms/m3)

2.011

• Substantial increase in modeled SOA from Criegee + ROOH reactions if they are as fast as early indications suggest.

4.00



Summary
• Building on chamber observations for postulated role of Criegee + ROOH insertion

mechanisms in SOA formation, direct experimental studies of Criegee + ROOH
performed.

H,C=CH,
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kamoto et al. (2013)
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L. Vereecken, A.R. Rickard, M.J Newland & W.J. Bloss, Physical Chemistry Chemical Physics, (2015), 17, 23847-23858.
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• Observation of formic acid + C1-Criegee oligomers in the Brazil rainforest: up
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6-

2-

—
— c2
— c3
— c4
— c5
— c6

c7

5

90

60

30

A o

-30

-60

-1/0

SOA
[ — 2.8 x 10" Cm 3

_14
— 4.8 x 

, 
iu Cm

-3

8.8 x 10
14 

c1/1 
3

14.8 x 10
14
M

-3

zero

60 80

-120 -60 )
Longitude

60 120 190

0.00 0.31 0.02 0.05 0.10 0.15 0.20 0.30 0.40
Mass Corcentation (micrograms/m3)

Y. Sakamoto, S. lnomata & J. Hirokawa, Journal of Physical Chemistry A, (2013), 117, 12912-12921 .
L. Vereecken, A.R. Rickard, M.J Newland & W.J. Bloss, Physical Chemistry Chemical Physics, (2015), 17, 23847-23858.



Acknowledgements
Lab work

Raybel Almeida
Kendrew Au
Paul Fugazzi
Nils Hansen
David Osborn
Aric Rousso
Craig Taatjes

Jet Propulsion Laboratory
California lnstitute of Technology

Kyle Bayes
Carl Percival
Stan Sander

Frank Winiberg
Kristen Zuraski

Beamline support

Th\

Iffrfftif
lil l

BERKELEY LAB

Oleg Kostko
Bruce Rude
Doug Taube
Kevin Wilson

dloo
2010 The liegenis of the University of California, through the Lawrence Berkeley Nation

This material is based upon work supported by the Division of Chemical Sciences,
Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S.

Department of Energy (USDOE). Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
USDOE's National Nuclear Security Administration under contract DE-NA0003525.

This paper describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily represent the views

of the USDOE or the United States Government.

This research used resources of the Advanced Light Source of Lawrence Berkeley
National Laboratory, which is a USDOE Office of Science User Facility. The

Advanced Light Source is supported by the Director, Office of Science, BES/USDOE,
under contract DE-ACO2- 05CH11231 between Lawrence Berkeley National

Laboratory and the USDOE.

Field work

MAN CHEsi ER
1824

James Allan
Asan Bacak
Tom Bannan
Hugh Coe

Carl Percival
Stephen Worrall

Instituto de Fisica
Universidade de SAo Paulo

Paulo Artaxo
Joel Brito

Modelling

Elik, University oftam BRISTOL
M. Anwar H. Khan
Dudley Shallcross

Theory

Argonne y
N.1.1 AB

Ahren Jasper
Stephen Klippenstein



Calculated TS for CH200 + SOZ insertion



Calculated PES for CH200 + HPMF
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