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Mechanism of Ozonolysis

By Rudolf Criegeel"]

(1,2,3-trioxolanes) and aldehyde or ketone oxides as decisive intermediates, all of which have
finite lifetimes. There is no warranted experimental basis for assuming an alterna ive mechanism.
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The formation of ozonides (1,24-trioxolanes) from alkenes and ozone can be described
as a succession of three [2+ 3] cycloadditions or cycloreversions involving primary ozonides
(1,2,3-trioxolanes) and aldehyde or ketone oxides as decisive intermediates, all of which have
finite lifetimes. There is no warranted experimental basis for assuming an alterna ive mechanism.
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« Significant source of OH in the daytime and major source of nighttime and winter OH - ‘tropospheric detergent'

Bimolecular reactions of Criegee intermediates also important in the troposphere.

Low SS concentration from ozonolysis - slow production, fast removal.

Photolytic generation pathways for Cl circumvent this (Taaties et ai, Welz et at)
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- i.e./ Ozonolysis of ethene: SOA suppressed in the presence of Cl scavenger. Cl-
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K.S. Docherty, W. Wu, Y. Bin Lam & P. Ziemann, Environmental Science & Technology, (2005), 39, 4049-4059.
B. Bonn, R. Von Kuhimann & M.G. Lawrence, Geophysical Research Letters, (2004), 31, L10108.
A. Sadezky, P. Chaimbault, A. Mellouki, A. Rémpp, R. Winterhalter, G. Le Bras, & G.K. Moortgat, Atmospheric Chemistry & Physics, (2006), 6, 5009-5024.

KON
I0°N —
g <

D ) ‘3}'30 .

' man

-y
30°3
60°S

Welz et al. (2014)

| !
135°W S0°W 45°W C® 45°E S0°E 135°E

FCOTH] 1aliv (Sase 2 ' Dase Gase)
BT T [ [ [

B 65 7 75 & 85 El 95

A. Sadezky, R. Winterhalter, B. Kanawati, A. Rompp, B. Spengler, A. Mellouki, G. Le Bras, P. Chaimbault & G.K. Moortgat, Atmospheric Chemistry & Physics, (2008), 8, 2667-2699.

Y. Sakamoto, S. Inomata & J. Hirokawa, Journal of Physical Chemistry A, (2013), 117, 12912-12921 .

Q. Zhao, W. Wang, F. Liu, J. Li, W. Wang, Atmospheric Environment, (2017), 166, 1-8.
L. Vereecken, A.R. Rickard, M.J Newland & W.J. Bloss, Physical Chemistry Chemical Physics, (2015), 17, 23847-23858.
O. Welz, A.J. Eskola, L. Sheps, B. Rotavera, J.D. Savee, A.M. Scheer, D.L. Osborn, D. Lowe, A.M. Booth, P. Xiao, M.A.H. Khan, C.J. Percival, D.E. Shallcross & C.A. Taatjes, Angewandte Chemie, (2014), 53 (18), 4547-4550.

R. Chhantyal-Pun, B. Rotavera, M. R. McGillen, M. A. H. Khan, A. J. Eskola, R. L. Caravan, L. Blacker, D. P. Tew, D. L. Osborn, C. J. Percival, C. A. Taatjes, D. E. Shallcross & A. J. Orr-Ewing, ACS Earth & Space Chemistry (2018), 2(8), 833-842.
A.C. Rousso,, N. Hansen, A.W. Jasper & Y. Ju, Journal of Physical Chemistry A, (2018), 122(43), 8674-8685.



3D datasets from MPIMS

+ Halocarbon wax coated quartz reactor - typical operating conditions of ~1-40 Torr, 300-373 K.




3D datasets from MPIMS

Halocarbon wax coated quartz reactor - typical operating conditions of ~1-40 Torr, 300-373 K.

Pulsed photolytic initiation of chemical reaction.

| | .
—_— . J\
-1 . . :
R R A 7N

R' » il %




3D datasets from MPIMS

Halocarbon wax coated quartz reactor - typical operating conditions of ~1-40 Torr, 300-373 K.

Pulsed photolytic initiation of chemical reaction.

| | '
avy .
X = -
N . . f
. " N

R A

Reactants, intermediates and products are continuously sampled via small
pinhole in side wall of quartz reactor.

Gas enters ionization region via skimmer where it is intercepted by VUV
radiation.

lons are subsequently detected via orthogonal-acceleration TOF mass
spectrometry - can see all masses at once.



3D datasets from MPIMS

+ Halocarbon wax coated quartz reactor - typical operating conditions of ~1-40 Torr, 300-373 K.

+ Pulsed photolytic initiation of chemical reaction.

N . NG — [ |
X = = — ¢
R A >l 7N -[ )\ '

R A

lon signal / a.u.

- Reactants, intermediates and products are continuously sampled via small
pinhole in side wall of quartz reactor.

« Gas enters ionization region via skimmer where it is intercepted by VUV
radiation.

- lons are subsequently detected via orthogonal-acceleration TOF mass
spectrometry - can see all masses at once.



3D datasets from MPIMS

+ Halocarbon wax coated quartz reactor - typical operating conditions of ~1-40 Torr, 300-373 K.

+ Pulsed photolytic initiation of chemical reaction.

;><;—"I> Py B j\ r{AT— [l(

R A

lon signal / a.u.

- Reactants, intermediates and products are continuously sampled via small
pinhole in side wall of quartz reactor. i 7

« Gas enters ionization region via skimmer where it is intercepted by VUV 0 20 40 60 80 100 120 140 160
radiation.

- lons are subsequently detected via orthogonal-acceleration TOF mass
spectrometry - can see all masses at once.

1. High resolution mass spectra (TOF-MS)



3D datasets from MPIMS

+ Halocarbon wax coated quartz reactor - typical operating conditions of ~1-40 Torr, 300-373 K.
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Direct kinetics measurements of Cl + ROOH
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High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products
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Observation of insertion products

High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products

Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]
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Observation of insertion products

High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products

Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]
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Observation of insertion products

* High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products

- Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]
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Observation of insertion products

* High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products

- Time resolved detection: Signal is time-resolved, consistent with Criegee loss and increases with [ROOH]

«  Spectroscopy using tunable VUV
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Can take a step towards greater chemical complexity by
comparing our observed products with those from ethene
ozonolysis.

PIE spectra of adduct from direct kinetic studies can also be
compared with ozonolysis studies from JSR experiments also
undertaken at the Advanced Light Source.

Hansen & Rousso, Sandia

300 K, 700 Torr.
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* High resolution mass spectra: Signal at the exact m/z of Criegee-ROOH insertion products
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Criegee + HMPF: Theoretical investigations
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Insertion products in the field

4 * Brazil rainforest, June 2016.

{
« TOF-CIMS (Bannan & Percival, Manchester & JPL) detection of the gas and aerosol phase:
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Insertion products in the field
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Insertion products in the field
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« Time behavior of insertion products follows that of formic acid
« Criegee + ROOH products now observed in both direct and ozonolysis lab studies, and the field.
« Criegee oligomerization products from ROOH measured in the field in gas and aerosol phase.

What are the potential global atmospheric implications of these reactions for SOA ?



Examining the impacts with modelling

« Calculations of rate coefficient for CH.O0 + HPMF (from CH200 + formic acid) in progress (Klippenstein, Argonne) - early
indications suggest the reaction is rapid.

- Preliminary global modeling of potential impact of Criegee + ROOH reactions have been undertaken (Khan & Shallcross, Bristol)
using the 3D global chemical transport model STOCHEM-CRI
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Examining the impacts with modelling

« Calculations of rate coefficient for CH.O0 + HPMF (from CH200 + formic acid) in progress (Klippenstein, Argonne) - early
indications suggest the reaction is rapid.

- Preliminary global modeling of potential impact of Criegee + ROOH reactions have been undertaken (Khan & Shallcross, Bristol)
using the 3D global chemical transport model STOCHEM-CRI.
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« Substantial increase in modeled SOA from Criegee + ROOH reactions if they are as fast as early indications suggest.
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Global modelling reveals Criegee + ROOH could be a significant source of SOA, = A e O 0 180
especially over Brazil rainforest.
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Calculated TS for CH-O0O + SO/Z insertion




Calculated PES for CH-O0 + HPMF

Relative Energy (kcal/mol)

10

HPMF + Cl

HPMEF...Cl]

CO p WS

SOZ

7 _1-43
=~ HOOCH O(O)CH OCHO

. HOOCH () +

+ OCH OCHO

OH +
coproduct

HOOCH _OC(O)OCH_OH




