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Motivations Deep Convolutional Generative Adversarial _ Training and Results
Neural Network (DCGAN S) ~ |e Architecture and parameters of the DCGANS

e Architecture of deep convolution neural network in GANs was constructed

e A stochastic network model has been applied to regenerate or classity complex considermg the fol.lowing guidelines proposed by kaiord al.. (2016 .
river networks. e (GANSs are one of deep neural networks, which have a new framework for e DCGANS were trained and evaluated on Ama-55zon AWS equipped with

estimating generative models via adversarial two neural network models. NVIDIA K80 GPUs, Intel Xeon E5-2686 v4 and 6256G RAM

e Topological and geomorphological characteristics of drainage networks are
essential to assess the hydrologic response of catchments. \

e Generative Adversarial Neural Networks (GANS)

e Successful drainage network generation is challenging because of inherent . :
. . . C e . . e (G model (generator) — a generative model generates samples through learning to
uncertainty from river systems and its application 1s limited by several statistical

, map from a latent space to a particular data distribution of real samples " ) I = Stride convolutions instead of any
assumptions. e D model (discriminator) — a discriminative model determines whether given @ 76 s pooling layers
e The stochastic network modeling even gets worse exponentially in terms of | samples were a generated (fake) sample by G model or real samples. ‘ —i - fﬁé"t}}‘lgzgiﬁ;ﬁgrm B 3 (s G
BOCUIRAY RIN} COMIPUIHIOIAL COSLS YRIen FRe DEDFOYEN SE8 CORpIcE. e The loss of DCGANs was estimated by binary cross-entropy function. = No hidden layers in fully connected net in
() (b) both the generator and the discriminator
Loss of D model: ~ minJ" = —%{E;mpm(x) logD(z)| + E.p.(z)log(1 — D(G (z)))}} = ReLU activation in generator for all
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layers except for the output, which uses
Tanh

Objectives

e We propose a Deep Convolutional Generative Adversarial Networks
(DCGANSs)-based, non-parametric approach for stochastic drainage network e Deep Convolutional GANSs
generation and apply 1t to two distinctive drainage networks with different

~ 1
Loss of G model: min J'¢) = —§E2sz(z) log(D(G(2)))]

100 .

s LeakyReLU activation in discriminator
for all layers except for the output,
which uses sigmoid
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network complexity. w e Deep convolution neural networks was adopted to develop the GANS in this study. Architecture and Parameters
. ) o e . 10t Ko 10t 100 Architecture & Parameters
e Fully convolutional nature of GANs allows the stable training and the generation > B - Latent Space 100
(z dimension)
i " Cihh’ of large samples that contains the similar properties with computational efficienc A B B Comvolutlon Lever | o 61/ 128 Pt wit orod s+
StOChaStlc netwo rk mOdeI [ | Glbb s MOdeI | g p p - p y 10° - 50 10° - L 50 e — - Adam‘);vith mini-batch ‘ |
(Radford ct al., 2016) e e . e Momentam %]Ui()a.s. %, = 0.999

. : < : 20 20 Batch Size 256

® GlbbS’ mOdel IIlChld€S bOth the SCheldeggGY mOdel and the U.IllfOI’In mOdel 10 ,\ [ 10 Regulavization Generator gem'h N()l'l}l‘illizilfg/(>11 with momentum 0.8
: H i 10;)1e+00 20108 4104 Ge104 86104 1ei05 10E)Ze+oo 26108 Asi08  Gei0s  @eios  deiob Discriminator (ll(t)(p?ut()\:lllzdl i.i;:lti:)-n with mententan 0.
depending on the value of a parameter, p. Kerne s Comoltion Discriminator I = - I 0
ctivation Func. anh (output layer)
‘seriminator L.(‘ak_\'.RoLu (alpha = 0.2),
g?g((z);‘) Tralnlng Results Of DCGANS Loss Func. IB?inary Cross-enfrlilll)l}(fnd ontpn e
- H CI - ok e Comparison of river nets by Gibb’s model and DCGANSs
T _If L I to 1 (Real)
. [ - | | : Lo - .
‘ ‘ I I L "f oG ST | Swdez o Swde2 | Swde2 . e The similarity of the two distinct groups of drainage network generated by
IJ | L PRa—— : DCGAN was evaluated based on width functions at the outlet of a drainage
ully Connected Ne I
‘ | network.
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e Two distinct width functions of the drainage network by DCGANs and Gibb’s

128 7/
(a) (b) (©) (d) Y
::> / o model are almost the same.
(a) The Scheidegger model, (b) Gibbs model withf= 10°and (c)p= 107*,and (d) the Uniform model B e NSE ~ 1.0 for Gibbs’ model p= 103, NSE > 0.92 for Gibbs’ model f= 104
| . : .
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e Two distinctive drainage networks by Gibbs’ model with p= 10°and p= 10~* were e S Stride: h s B T cabtglie | C Ccabzelie | [ ot gL 1o
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