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Motivations

• Topological and geomorphological characteristics of drainage networks
essential to assess the hydrologic response of catchments.

• A stochastic network model has been applied to regenerate or classify complex
river networks.

• Successful drainage network generation is challenging because of inherent
uncertainty from river systems and its application is limited by several statistical
assumptions.

• The stochastic network modeling even gets worse exponentially in terms of
accuracy and computational costs when the networks are complex.

Objectives
• We propose a Deep Convolutional Generative Adversarial Networks

(DCGANs)-based, non-parametric approach for stochastic drainage netwom÷
generation and apply it to two distinctive drainage networks with different
network complexity.

Stochastic network model: Gibb's Model
• Gibbs' model includes both the Scheidegger model and the uniform model
depending on the value of a parameter, fi.
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(a) The Scheidegger model, (b) Gibbs model withr3— 103and (c)I3= 10-4,and (d) the Uniform model

• Two distinctive drainage networks by Gibbs' model with p= 103and 10-4were
generated and compared with the networks by the proposed model, DCGANs.

Training Datasets and Cases
• The drainage network images and their equivalent directional connectivity
information matrices (D-matrices) generated by two Gibb's models were used as
training samples.
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• Connectivity directions of a D-
matrices were separated into each
layer as soft constraints of training.

• To validate the proposed approach,
several cases of the training data set
with images and D-matrices.

Subcase Gibb's model Type Size

Case-1
1 $ --- 103

Drainage Image 120 x 120
2 ,3 = 10-4

Case-2
1 )3 = 103

D-matrix 11 x 11
2 )3 = 10--1-

Case-3
1 )3 = 103 D-matrix with 2 layers 11 x 11 x 2

2 /3 = 10-4 D-matrix with 3 layers 11 x 11 x 3

Deep Convolutional Generative Adversarial
Neural Network (DCGANs)

• Generative Adversarial Neural Networks (GANs)

• GANs are one of deep neural networks, which have a new framework for
estimating generative models via adversarial two neural network models.

• G model (generator) — a generative model generates samples through leaming to
map from a latent space to a particular data distribution of real samples

• D model (discriminator) — a discriminative model determines whether given
samples were a generated (fake) sample by G model or real samples.

• The loss of DCGANs was estimated by binary cross-entropy function.

Loss of D model: min J(D) — — {E

Loss of G model:

Pdata(x)PogD(x)] +Ez,pz(z)Vog(1 D(G(z)))] }
min j(G)  _2Ez,,,pz(z)p9(D(C(z)))]

• Deep Convolutional GANs

• Deep convolution neural networks was adopted to develop the GANs in this study.
• Fully convolutional nature of GANs allows the stable training and the generation

of large samples that contains the similar properties with computational efficiency
(Radford et al., 2016).
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Training and Results
Architecture and parameters of the DCGANs

• Architecture of deep convolution neural network in GANs was constructed
considering the following guidelines proposed by Radford et al. (2016

• DCGANs were trained and evaluated on Ama-55zon AWS equipped with
NVIDIA K80 GPUs, Intel Xeon E5-2686 v4 and 6256G RAM
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Training Results of DCGANs
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• Stride convolutions instead of any
pooling layers

• Batch normalization in both the generator
and the discriminator

• No hidden layers in fully connected net in
both the generator and the discriminator

• ReLU activation in generator for all
layers except for the output, which uses
Tanh

• LeakyReLU activation in discriminator
for all layers except for the output,
which uses sigmoid

Architecture and Parameters
Architecture & Parameters

Latent Space
(z dimension)

100

Convolution Layer
Generator 128 / 64 Filters with kernel size : 3
Discriminator 64 / 128 Filters with kernel size : 3

Optimizer

Adam with mini-batch
Learning Rate 0.0002
Momentum 01 = 0.5, /32 = 0.999
Batch Size 256

Regularization
Generator Batch Normalization with momentum 0.8

Discriminator
Dropout with 25 %,
Batch Normalization with momentum 0.8

Activation Func.
Generator

ReLu,
Tanh (output layer)

Discriminator
LeakyReLu (alpha = 0.2),
Sigmoid (output layer)

Loss Func. Binary Cross-entropy

• Comparison of river nets by Gibb's model and DCGANs
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• The similarity of the two distinct groups of drainage network generated by
DCGAN was evaluated based on width functions at the outlet of a drainage
network.

• Two distinct width functions of the drainage network by DCGANs and Gibb's
model are almost the same.

• NSE 1.0 for Gibbs' model p , NSE > 0.92 for Gibbs' model fi= 10-4

Gibbs: [3= 103

10 20 30

10 20 30

40 50

40 50

15

10

15

10

Case 1: 13 = 103

NSE 1.000

10 20 30 40 50

10

Case 1: = 10-4
NSE 0.921

20 30 40 50

15

10

15

10

Case 2: 13 = 103

NSE 1.000 -

10 20 30 40 50

Case 2: 13 = 10-4

NSE 0.927

j‘h 4

10 20 30 40 50

15

15

Case 3: [3 = 103

NSE 1.000

10 20 30 40 50

Case 3: [3 = 10-4

NSE 0.961

10 20 30 40 50

Comparison of the Stochastic Properties of the Drainage Nets by Gibb's Model and DCGANs

• The proposed approach using DCGANs can successfully capture the distinct
stochastic property of the drainage networks by Gibbs model.
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