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ABSTRACT

When structures are excited using random vibration, the input excitation is traditionally Gaussian. If the structure is
reasonably linear, the output will also be Gaussian or nearly Gaussian. In contrast, the introduction of damage into
the structure, such as fatigue cracks, will result in a shift away from a linear response to a more non-linear, and hence
non-Gaussian response. The bispectrum is a third-order spectrum that has unique properties that make it a potentially
useful tool to detect non-Gaussian signals buried within Gaussian random excitation. This paper presents the results
of numerical simulations and experimental fatigue testing using random excitation along with bispectral analysis of
the response data. The results show that the bispectrum can identify the onset and progression of fatigue damage in
simple structures.

INTRODUCTION

Laboratory random vibration excitation of structures is typically accomplished using a Gaussian random distribution.
Field data also are frequently Gaussian in nature, although non-Gaussian inputs do occur. If the structures being
excited are reasonably linear, then the Gaussian random vibration excitation will also produce a Gaussian response.
If damage is introduced in the structure, such as a fatigue crack, the resulting response will shift away from the original
linear, or nearly-linear response, to a more non-linear response. The non-linearities are a result of the crack opening
and closing as the part vibrates. The increased non-linearities in the system response are also non-Gaussian.

The bispectrum is from the class of higher-order spectra or poly-spectra and is defined as a third-order spectrum [1,
2]. The bispectrum has unique properties that lend themselves to the detection of non-Gaussian signals buried within
Gaussian random excitation. Gaussian signals are symmetrically distributed about the mean whereas non-Gaussian
signals are not necessarily symmetric. A symmetrically distributed signal will have a zero bispectrum with the
bispectrum increasing as the asymmetry increases. Thus, a linear system subjected to Gaussian random excitation
will respond with a very low or zero bispectrum and if non-linearities are introduced into the system, the bispectrum
should increase proportionately.

Figure 1 shows an example of an increase in the bispectrum peak magnitude with the addition of non-linearities in a
signal. The signal the left side of Figure 1 was produced using a uniform random signal that was then band-pass
filtered to produce a narrow-band random acceleration time history. The same signal was then multiplied by a one-
sided offset window to produce the altered signal shown in the center of Figure 1 and further amplified in the right-
hand plot of Figure 1. The bispectrum maximum is shown in all three plots with the altered signals having a bispectrum
peak magnitude 5.7 and 22 times greater than the magnitude of the original signal, respectively. Figure 2 shows a
comparison of the auto-spectral density (ASD) function for each of the three signals shown in Figure 1. While
magnitude of the ASD is larger for the signals with more non-linearities, there is nothing particularly characteristic in
the ASD that would signal a shift from a linear to non-linear response. In this case, the ASD magnitude is increasing
because the average amplitude in the time history is increasing, not because the response is more one-sided.

* Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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Figure 1. Random Acceleration Signal (Left) and Random Acceleration Signal with Late-Time Negative
Acceleration Response Increases (Center and Right) Showing Increases in Bispectrum Magnitude
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Figure 2. Auto-Spectral Density Function from the Original Random Acceleration Signal and the Two
Altered Signals from Figure 1

A series of experiments was conducted on additively manufactured cantilever beams. In these experiments, the beams
were exposed to a narrow-band random excitation centered about the beam’s fundamental resonant mode until the
beams failed due to fatigue. It was hypothesized that new beams would exhibit a relatively low bispectral response
while they were undamaged and that the bispectrum would increase with increasing fatigue damage until failure
occurred. This hypothesis was also tested using numerical simulations of a beam with a bi-linear stiffness and an
applied random force excitation.

Figure 3 shows a sketch of a cantilever beam with a crack near the beam’s fixed end. In the uncracked state, the beam
stiffness is the same regardless of whether the applied force, F, is oriented up or down. However, in the cracked
condition, the stiffness for the beam bent downward is noticeably less than the stiffness for the beam bent upward.
When the beam is curved downward, the crack opens because the upper portion is in tension, and the effective cross-
sectional area and area moment of inertia are decreased. In contrast, when the beam is curved upwards, the crack is
closed, and load can be carried across the crack since it is in compression. Thus, the stiffness is essentially the same
as the uncracked beam when the crack is in compression.



Crack F

SNONONNNNN

Figure 3. Sketch of a Cantilever Beam with a Crack Located Near the Base

BISPECTRUM THEORY

The most common spectral analysis performed today is the ASD, historically referred to as the power-spectral density
(PSD). The ASD is defined as the finite Fourier transform of the second-order cumulant of the time history. The
second-order cumulant is also known as the covariance, when calculated from a random variable with itself, for any
time delay, t, and is given by:

Cox (1) = E{x(©)x(t + 1)}. (1)
Or
T/2
Cox(T) = Thf?o % f_ T/Zx(t)x(t + 7)dt. @

Eq. (2) is also known as the auto-correlation function of x(t) and can also be written without the limit as:

Cox(T) = foo x(t)x(t + T)dt. 3)

The auto-spectral density function is then given as the Fourier transform of the auto-correlation function as:

Sxx(f) = T[Cz,x(‘[)] = fooczyx(‘[)e_iznfrd‘[. (4)

One requirement for Eq. (4) to work is that the integral of the auto-correlation must converge. Since the auto-
correlation function tends to the signal mean, it is a requirement that the random vibration signal be zero mean [3].

As a matter of practicality, the ASD is not actually calculated using the auto-correlation integral as defined in Eq. (4).
The reason is simply that the computational overhead is too high. Using the Wiener-Khinchin theorem, it can be
shown that the ASD for a real-valued signal can be calculated as the product of the Fourier transform of the signal
with its complex conjugate [4]. This method using the Finite Fourier Transform (FFT) is so much faster than solving
the integral equation that most modern numerical methods for calculating the auto-correlation make use of the Wiener-
Khinchin theorem to back into the auto-correlation rather than calculate it directly.

Likewise, the bispectrum is defined as the Fourier transform of the third-order cumulant of the time history. The third-
order cumulant is the same as the third central moment and is defined with time delays, 7, and 7, as:

C3,x(T1T2) = E{x(®)x(t + t)x(t + 1)} Q)

Or in integral terms as:



C3,(11,7,) = fw foox(t)x(t + 7)x(t + 1,)dtdt. ©

Eq. (6) results in a two-dimensional matrix of values. The bispectrum is then calculated as the two-dimensional
Fourier transform of the third-order cumulant function as:

{oe] (o] . 7
Bxx(f) = T[C3,x(T1'T2)] = f f C3'x(T1,T2)B_L(2”f1T1+2”f2T2)dTlde. ( )

Higher-order cumulant statistics possess an interesting property that will be exploited for this analysis. That is, for a
real-valued, zero-mean Gaussian random process, x(t), all cumulant statistics greater than second-order are zero. This
property allows discrimination against additive Gaussian noise or detecting departures from a Gaussian signal. If the
cumulant is zero, then the Fourier transform of that cumulant is also zero and the resulting higher-order spectra will
also be zero.

Gaussian signals have zero third-order cumulant spectra because they are symmetrically distributed. Other non-
Gaussian signals can have zero third-order cumulants but large higher-order cumulants. Exponential, Rayleigh, and
k-distributions are some examples of processes with zero third-order cumulants and non-zero fourth-order cumulants

[1].

NUMERICAL SIMULATION
To test the theory that the bispectrum can be an indicator of damage, a simple numerical example was studied. A
cantilever beam, like the one shown in Figure 3, and with a lumped mass at the free end was modeled as a spring mass
system. The stiffness of the cantilever beam is given by k = 3EI/L3, where the stiffness and mass were chosen to

match the 3D printed cantilever beams used in the experiment. The structural parameters are given in Table 1.

Table 1. Material Properties for 3D Printed Cantilever Beans

Modulus of Elasticity 2.94ES psi
Cross-Sectional Area 4.91E-2 in?
Area Moment of Inertia 1.918E-4 in*
Beam Length 5in
Density 9.29E-5 Ibgsec?/in*
Mass at Free End 0.0289 1b¢

The equation of motion for this system is given by the usual expression:

J(©) + 2{wy(0) + w?y(t) = F (). ®)

For this example, the applied force, F(t), was derived using a uniform random signal that was then band-pass filtered
to produce a narrow-band random forcing function. From the parameters given in Table 1, the cantilever beam’s
fundamental natural frequency is about 20 Hz, so the band-pass filter frequencies were set at 2 Hz and 40Hz. It should
be noted that a uniform random signal is not Gaussian; however, it should be symmetric about a mean of zero if
sufficient time is analyzed; therefore, its bispectrum should be approximately zero. The randomly generated signal
used as a forcing function for these simulations is shown in Figure 4.
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Figure 4. Band-Pass Random Force Input Used for Numerical Simulations

To simulate a crack in the cantilever beam, a bi-linear beam stiffness was assumed. The displacement at the tip was
checked at every time-step and if the displacement was greater than zero (beam deflected upward and crack in
compression) the full stiffness, k = 3EI/L3, was used in the calculation. If the beam displacement was less than zero
(beam deflected downward and crack opened) the stiffness was scaled by a constant, k = n3EI/L3. The constant, 1,
was varied between 0.6 and 1 to simulate a range of crack depths and the resulting beam tip responses were calculated.
The n = 1 case represents an uncracked beam, or zero crack depth and was used as the baseline response. Figure 5
shows the calculated beam tip response from a simulation of the uncracked beam and a simulation of a cracked beam
with n = 0.7 for the tensile bi-linear stiffness. While there are obvious differences between the two responses shown

in Figure 5, the cracked beam case does not appear to be obviously skewed by the bi-linear stiffness.
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Figure 5. Calculated Beam Tip Response for an Intact Beam and a Cracked Beam withn = 0.7.



Figure 6 shows a plot of the variation in the maximum absolute bispectrum with the cracked beam bi-linear stiffness
ratio. A line representing the bispectrum of the intact beam tip response is included as a reference. For very small
cracks (n~1) the maximum bispectrum converges to the intact beam bispectrum. As the crack size grows (n < 1)
the maximum bispectrum of the beam tip response increases substantially. Figure 6 also shows that the while the
beam tip response shown in Figure 5 is unremarkable for detecting damage, the maximum bispectrum indicates a
change of over an order of magnitude.
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Figure 6. Variation in Maximum Bispectrum with Bi-Linear Stiffness Ratio

TEST SETUP

The experimental portion of this study used 3D printed cantilever beams tested in the Sandia National Laboratories
Component Dynamics Laboratory on a small modal shaker system. The cantilever beams used for this investigation
were made from ABS plastic and printed by the Sandia National Laboratories Additive Manufacturing group. A
photograph of the test setup is shown in Figure 7. The tests were conducted with sets of four beams and a narrow-
band random vibration input was applied until all four beams failed. The narrow-band random excitation covered the
range from 10 — 30Hz, which was approximately centered around the first natural frequency of the cantilever beams.
Since a relatively small shaker was used, a gravity off-load system was incorporated using soft springs to support the
test fixture’s weight independent of the shaker armature. This allowed for higher acceleration loads to be used for
these experiments.

Figure 8 shows a close-up photograph of one cantilever beam used for testing. All beams were five inches long and
0.25 inches in diameter. The beams had a 0.025-inch notch near the base to create a stress concentration point. This
feature helped ensure that all beams failed predictably at the same location. A clamp-on steel collar with an attached
accelerometer was added at the free end to measure the response and to increase the bending moment in the beam.
The added weight at the cantilever beam free end was about 0.0289 Ibs (13.1 grams), substantially more than the
weight of the plastic beams.
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Figure 8. Cantilever Beam Test Specimen Showing Stress Concentration and Tip Weight

Figure 9 shows a plot of the base input acceleration time history and the resulting ASD from one test on four cantilever
beams. The random vibration input was applied until all four cantilever beams had failed. In this example, the
acceleration level was relatively low, at 0.76 GRMS. The test required 101.6 minutes to fail all four beams by fatigue.
Other tests were conducted at different nominal acceleration magnitudes to gather fatigue data at different levels.
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Figure 9. Base Input Acceleration Time History and the Resulting ASD

TEST RESULTS

Figure 10 shows a plot of a typical acceleration time history response at the cantilever beam’s free end. The response
is amplified from the input due to the motion of the cantilever beam. The output initially had a 2.06 GRMS compared
to a 0.76 GRMS input. This beam failed after 64.6 minutes of testing. Figure 10 also shows a plot of the ASD
calculated from the first minute of vibration data and the last minute of vibration data before the beam failed. The
ASD plots show a downward shift in the beam’s response frequency indicating that the beam is less stiff at the end of
the exposure. It is assumed here that the softening is a direct result of crack growth and the resulting reduction in
cross-sectional area. It is also possible to calculate ASD curves from time segments throughout the test to see the
trend showing a reduction in the fundamental response frequency. Figure 11 shows a plot of the frequency at the ASD
maximum calculated in sixteen-second time intervals across the entire data set. While the results show some
significant variability, likely due to quantization of the ASD maximum, it is apparent that the frequency is relatively
constant over the first 2500 seconds and then shows a decidedly downward trend from there until the beam fails when
the frequency drops suddenly to zero. However, the ASD only shows a shift in the beam response but does not
necessarily provide insight into the reason for the shift.
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Figure 10. Cantilever Beam Tip Acceleration Response Time History Along with the ASD from the First
Minute and Last Minute Before Failure
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Figure 11. Plot of the ASD Maximum Frequency versus Exposure Time from the Cantilever Beam Tip
Accelerometer

Figure 12 shows plots of the maximum absolute bispectrum from the input and the response accelerometers at the
clamped and free end of the cantilever beam, respectively. For this plot, the bispectrum was calculated in eight-second
time intervals across the entire data set. As discussed previously, the bispectrum for a Gaussian random signal should
be identically zero, and Figure 12 shows that the maximum bispectrum from the input excitation is nearly zero for all
time. In contrast, the bispectrum at the free end of the beam shows two interesting trends. First, even with a pristine
cantilever beam, the bispectrum is nominally an order of magnitude greater at the beam’s free end than at the input.
The implication from this is that either the 3D printed cantilever beams or the test fixture setup is not perfectly linear,
since the output is less Gaussian than the input. Second, the bispectrum magnitude shows a relatively flat trend up



until around 2550 seconds and then a rapidly increasing amplitude until the beam fails at 3876 seconds. This is more
easily seen when a trend-line is added through the calculated bispectrum at the beam tip. It is hypothesized that the
onset of this upward trend in the bispectrum magnitude represents the onset of cracking in the cantilever beam. Cracks
are known to generate a nonlinear stiffness condition as the crack opens under tensile loads and closes again under
compressive load. The onset of the change in the bispectrum magnitude also corresponds to the onset of the downward
trend in the beam’s first natural frequency as obtained from the ASD. Thus, the increase in the bispectrum coupled
with the decrease in stiffness associated with a decrease in the first natural frequency is indicative of crack formation
and growth in the beam.
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Figure 12. Maximum Absolute Bispectrum at the Cantilever Beam Base and the Cantilever Beam Tip with
Trend Line Added

The data presented in Figure 12 was obtained from one of the four beams in the test. Figure 13 shows bispectrum
plots for the remaining three beams in the same test. Beam two, shown in the upper plot, failed at about 2550 seconds
and shows a very flat, low-level bispectrum up until approximately 2340 seconds at which point the bispectrum
magnitude begins to rise rapidly until the beam breaks. Beam three, shown in the center plot, has a much more varied
bispectrum magnitude early on but does show the rapid rise trend beginning at about 1500 seconds and failing at about
1610 seconds. Beam three also failed earliest out of the three beams tested here, likely indicating that fatigue damage
was accumulating more quickly in this test specimen or perhaps indicative of some other form of latent damage. The
final beam, shown in the lower plot, is not as clear as the first three beams. The bispectrum magnitude shows several
high spikes throughout the time record followed by a brief, but not obviously significant, run-up in the bispectrum
magnitude in the last 100 seconds of the test. It should be noted that beam four survived considerably longer than the
other three beams exposed to the same vibration input. This shows some of the inherent variability in fatigue data.
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Figure 13. Maximum Absolute Bispectrum at the Cantilever Beam Tip for Beams 2, 3, and 4



CONCLUSIONS

In this paper, the bispectrum is presented as a possible indicator of fatigue damage. The bispectrum is zero for
symmetric random vibration signals. If there is asymmetry in the signal, the bispectrum will increase with increasing
magnitude as the asymmetry increases. This makes it a potentially useful indicator of damage in a structure, such as
the fatigue cracks that create a bi-linear stiffness. The bispectrum appears to be more useful when crack growth is
relatively slow.

The utility of the bispectrum was illustrated on random vibration tests of cantilever beams to failure. The change in
the bispectrum as a function of time showed the onset and growth of a crack better than the change in the natural
frequency.
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