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Artificial neural networks and deep learning

Computers are fast and efficient at
implementing task-specific instructions

Computers struggle when there are
no clear instructions for the task

dx 5 Which one of these images is a cat?
E =X
x=1;
dt = 0.01;
fori=1:1000 {
dxdt = x."2;
xnew = dt*dxdt; | .
X = Xnew; } Image recognition
end Autonomous driving

Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y
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Artificial neural networks are power intensive

Andrew Ng, Coursera n, m > 1000 2
Nawrocki et al. IEEE Elec. Dev. 2016




Evolution of Computing Machinery
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I \ Digital and analog implementations of neural networks
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Use non-volatile memory

Von Neumann Digital
Separate logic and memory structures
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Uses established CMOS technology
Data bus results in latency and power

Simultaneous logic and memory
3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
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Fundamental physics dictates memristor |-V
filament forming metal oxides (FFMO)
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phase change materials (PCM)
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* Increase conductance - synchronized V+ to memristor, FET gate; set | - s
compliance 20 cycles for a single device

*» Decrease conductance-> reinitialize memristor, then increase conductance Gate voltage (V)
as above
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lon-insertion electrodes for neuromorphic computing

Electrolyte
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I LISTA: 1stion insertion artificial synapse
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electrolyte/insulator
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Lithium insertion into Li,TiO, (anatase)
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Decrease in conductivity due to correlation in Li ;TiO,

Li* +e™ + Tig; - Li; + Tiy;
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ear programming and high accuracy

LixTiO, transistor lon insertion: stores information /Linearity is essential to train\
Voltage: + 0.15V continuously as dopants in a crystal an accurate neural network
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I \ Low-voltage, Si-free electrochemical memory
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‘L Wang et al. Nat. Mater. 2017

Non-volatile memory that switches at just 6 times the thermal voltage
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I \Switching speed and endurance

/ Inorganic (Lix TiO,) ~5 ms, Organic (PEDOT/PSS) ~10 us
10° read/write cycles 108 read/write cycles
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W V/2 crossbar programming scheme

Devices are selected through applying
the row and column voltages
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I \ lon insertion transistors for neuromorphic computing

/ Analog neuromorphic computing provides lower energy and \
more parallelism compared to digital computing.
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/ Electrochemical ion insertion can be used to create highly
linear, low voltage non-volatile analog transistors
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