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Artificial neural networks and deep learning 

Computers are fast and efficient at
implementing task-specific instructions

dx

dt = 
X2

x=1;
dt = 0.01;
for i = 1:1000 {

dxdt = x.^2;
xnew = dt*dxdt;
x = xnew;

end

Computers struggle when there are
no clear instructions for the task

Which one of these images is a cat?

Image recognition
Autonomous driving

Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y
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Artificial neural networks are power intensive
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Andrew Ng, Coursera n, m > 1000
Nawrocki et al. IEEE Elec. Dev. 2016
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Evolution of Computing Machinery
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1 Digital and analog implementations of neural networks 

[
Yi 1411,1

Ym Wm,1

• • •

• • •

r Von Neumann Digital
Separate logic and memory structures

SRAM to store the Arithmetic logic unit
weights for multiplication

Data Bus

X 1

Uses established CMOS technology
Data bus results in latency and power

kltakdAvcr
114111o. Nidtbi41165.or U44414.114w,

In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix
multiplication

Conductance of each
element can be changed
in a predictable manner

11 12 13

11 = V1W11 + V2W21 + V3W31

Simultaneous logic and memory
3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
Zidan, Strachan, & Lu, Nat. Elec. 1, 22, 2018 4



 Fundamental physics dictates memristor 1-v
I filament forming metal oxides (FFMO)

Yang et. al. Nature Communications (2012)

phase change materials (PCM)

Breitwisch, Phase Change Materials:
Science and Applications 2009 by
Springer
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• Increase conductance 4 synchronized V+ to memristor, FET gate; set I
compliance 20 cycles for a single device

• Decrease conductance4 reinitialize memristor, then increase conductance
as above
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1 lon-insertion electrodes for neuromorphic computing
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LISTA: 1 st ion insertion artificial synapse
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Lithium insertion into Liji02  (anatase) 
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Decrease in conductivity due to correlation in Lin5TiO2 I
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Linear programming and high accuracy 
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Linearity is essential to train
an accurate neural network
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LixTiO2 transistor lon insertion: stores information
Voltage: ± 0.15 V continuously as dopants in a crystal
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TaOx Memristor
Voltage: ±1 V
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Memristors: stores information
at filaments

Wang et al. Nat Mater. 2017 _..)
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Low-voltage, Si-free electrochemical memory 

411D

Solid Electrolyte Li+

Pt 0.110....011111
=MENEM= Pt

CO v

Diffusive memristor (Ag in
Si0x): high ON/OFF ratio

Ion insertion transistor: high
charge density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater.  2017

Non-volatile memory that switches at just 6 times the thermal voltage

C
h
a
n
n
e
l
 c
on
du
ct
an
ce
 (
R
S
)
 

2.2 — 2.2 —
vw = 250 mV

2.0 —

1.8 —

1.6 —

1.4 —

1.2 —

1.0 —

0.8 —

Vw = 170LIV

100 ms

C
h
a
n
n
e
l
 C
o
n
d
u
c
t
a
n
c
e
 (
u
S
)
 

atOrnagemosowtoloresoftgenastament
2.0 —

1.8 —

1.6 —
Non-volatile state retention

1.4 —0111111014.111111I

1.2 —

1.0 —ftsolgoisommulas6mma# 

0.8 —

0 20 40 60 80 100

Pulse number

0 40 80 120

Pulse number
12



Switching speed and endurance 
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V/2 crossbar programming scheme 

Devices are selected through applying
the row and column voltages
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A device is programs when both
the row and column is selected
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Selecting a row or column will not disturb the device
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Ion insertion transistors for neuromorphic computing 

Analog neuromorphic computing provides lower energy and
more parallelism compared to digital computing.
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the brain -10 Hz

100 billion neurons
100 trillion synapses

Electrochemical ion insertion can be used to create highly
linear, low voltage non-volatile analog transistors
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