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The Role of MBSE and Reduced Order Modeling
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5 Tip to Tail System Level Model
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6 Physics Variable Trajectories
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7 Connecting Passive Electrical Components
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Electrical Modeling
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9 Electrical Modeling
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1 0 Electrical Modeling
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„ Electrical Modeling
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lElectrical Modeling
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14 1 Electrical Modeling Power Converters
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16
Modeling Parameters as Multi Dimensional
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1 8 Electrical Modeling - Charge Pump
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1, Charge Pump Modeling Results
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20 Physics Model - Finite Element Model
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2,1Simulink Model Reduced Order Shock/Vibration
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„ PFC - Simulink Model
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25 Simplified Five-Mass Model
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26 konnecting Linear Continuous Time Models
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2, konnecting Linear Continuous Time Models
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29 Modeling Interconnects in System Model
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3. Modeling Nonlinearities
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32 Electrical Modeling
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33 Capacitive Networks



34 Inductive Networks
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„ Topologically Derived Charge Pump Constants
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36 electrical Modeling Digital FPA Model Example LEI
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„ Electrical Modeling - Digital
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38 Electrical Conduction



„ Mechanical

• Vibration / Shock

• Peak Stress

• Fatigue

• Kinematic Behavior

• Deformation



4. Lumped Mass Reduced Order Modeling
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41 Coupling Elements as Tensors vs Constants

Stiffness Tensor

[kky

kzx2

Symmetry

Damping Tensor

X

l -

Symmetry
a

i

Displacement / "Stretching"



42 1 Stiffness Tensors in System Matrix

kxx12 kxy12 kxz12

kyx12 kyy12 kyz12

kzx12 kzy12 kzz12

kxz21 kxx23

kyz21 kyx23

kzz21 kzx23

kxx32 kxy32 kxz32

kyx32 kyy32 kyz32
kzx32 kzy32 kzz32

kxz41 kxx43

kyz41 kyx43

kzz41 kzx43

kxy13 kxz13

kyy13 kyz13

kzy13 kzz13

kxy33

kyy33

kzy33

kxz33
k̀yz33
kzz33

kxx24
kyx24
kzx24

kxx44
kyx44
kzx44

kxy24 kxz24
kyy24 kyz24

kzy24 kzz24

kxy44 kxz44
kyy44 kyz44
kzy44 kzz44



43 Modeling Mechanical Vibrations and Thermal
ulink

Stiffness Tensors

Force Inputs

Drsplacement inputs

Damping Tensors

Masses

1
Position Outputs

Velocity Outputs

Acceleration Outputs



„ Vibration Example Shell
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„ Vibration Example Beam

[Click on Video]
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„ Vibration Example Shell
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„ Vibration Example Circuit Board

[Click on Video]
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.48 Thermal Modeling

• Conduction
• Thermal Resistance

• Thermal Capacitance

• Convection
• Free

• Forced

• Radiation
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. Thermal Modeling - Conduction



50 Thermal Modeling — Conduction Matrix
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51 Thermal Modeling - Radiation

q = ekb(T14 — T24) = 
ATTT

Ti_ -12

R
(T1 — T2)

— ekb(T14 — T24)

_J

1



521Electro Mechanical

• Motors / Actuators

• Electrical Connectors F Thermal F shock/vibe

• Pyro Thermal Pressure Waves



„ Fluids

Gasses / Pneumatics

Pressure Waves / Pyrotechnics



54 Electro-Magnetic Fields

Radiated EMI (Power Converters)

Radar
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„ Backup Slides

II



56 Extraction of Parameters

M- 1

(k01-Fsb01)(X0

M2

(k02-Fsb02)(X0

M- 3

(1(03+sb03)(x0

M- 4

(1(04+sb04)(x0

+

Four Element Example in 1D

xl.) + (• k21+SID21)(x2 xl.) + (• k31+sb31)(x3

)(2) + (• k21+sb21)(x1 )(2) + (• k32+SID32)(x3

x3) + (• k13+sb13)(x1 x3) + (• k23+SID23)(x2

)(4) + (• k14+SID14)(x1 )(4) + (• k24+SID24)(x2

+

X1) + (k41-1-SID41)(X4 — X• 1) = M1S2X1

X2) + (k42-1-sb42)(X4 — X• 2) = M2S2X2

X3) + (k43-1-SID43)(X4 — X• 3) = M3S2X3

X4) + (k34-1-S1334)(X3 — X• 4) = M4S2X4

Multivariable Regression

+ + +

Solve for Unknowns 4 Extract Stiffness and Damping tensor

xo , vc

components

n



57 4 Element System in 1D

K10
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 l\/\/ 
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b40 b41 b42 b43 b44:,

-->l Diagona

-->l Diagona

Element
Multiply

1/M0

1/M1
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1/M4

Acceleration

integrator

Velocity
1

2



58 Full System Model Simulation Indicates when Ell
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