

2018 Microgrid R&D Program Meeting

Networked Microgrids: System Protection Constraints

Mark Buckner (ORNL)
Matthew Reno (SNL)

December 11, 2018

Outline

- Review of Existing Tools and Projects
- Protection of Networked Microgrids
- Approach to Protection Design
- Example Constraint for Protection Design
- Integration of Protection Constraints with OD&O
- Validation

Review of Existing Microgrid Design Tools

	REopt	MDT	ROMDST	MADRA	LPNORM	Proposed OD&O
Optimization of Design	X	X	X	X	X	X
Multiple Microgrid Controllers		/				X
Adding Lines and Hardening Lines		X	X		X	X
Three-phase Unbalanced Power Flow					X	X
Microgrid Reconfiguration			/		/	X
Fault Analysis and Protection Design						X
Transients during Switching						X
Market Models	X	/	/	/		X
Regulatory Framework	X		/	X	/	X
N-1 Reliability Analysis of Microgrid		X	X	X	/	X
Resilience Scenario Analysis	X	X			X	X
Open-Source			X	X	X	X

Review of Existing Protection Projects

- Review of protection, microgrid protection, and networked microgrid protection projects
- Identification of needs
 - Protection for microgrids / networked microgrids is an emerging field. Unlike other protection arenas, there is little utility / industry experience to draw from.
- None of these are in an optimization framework
 - There is extra complexity in an optimization framework because there is not a fixed network topology. Optimal design is a fluidly changing network design that has to include protection
- ORNL Examples:
 - Applying model-based adaptive relay to EPB networked microgrid
 - Distributed FLISR and self-healing grids on Duke microgrid
- ORNL Deliverable – To be completed December 2018

Overview

- Objective: Incorporate protection considerations into networked microgrid design
- Networked microgrid designs must be protectable if industry is to adopt them. Wide variety of protection options
 - Example: Overcurrent/fuses vs. Communication based approaches
- Protection can be a significant portion of a microgrid's cost, so optimization with cost as an objective should consider protection
- First networked microgrid design effort to include protection considerations

Networked Microgrid Protection

- Differences for networked microgrid protection than microgrid protection
 - Networked microgrids may involve utility assets – this changes the rules and standards for protection
 - Potentially multiple owners with the requirement to coordinate communications and controls for adaptive and pilot protection
 - More variations in topologies and reconfigurations
 - Each microgrid may involve different types of generation
 - Switching transients (inrush) when connecting islanded microgrids to additional loads or other microgrids
- This project considers existing microgrid protection techniques (leveraging other DOE research), but the protection schemes may have to be modified to address these differences

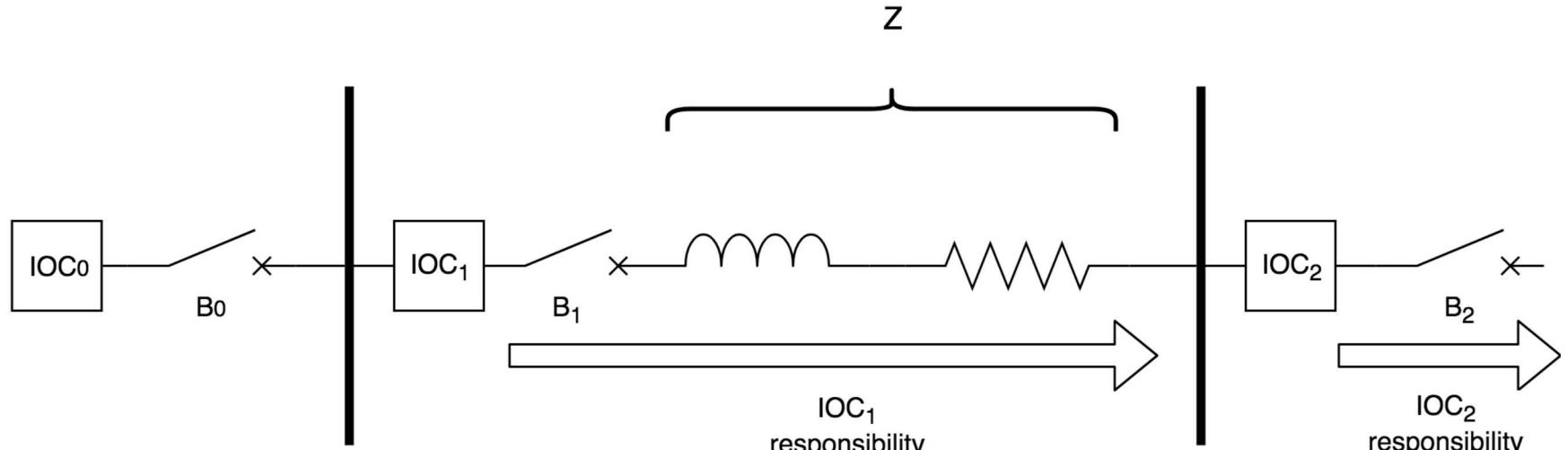
Approach

- Do not attempt to rigidly define a networked microgrid protection system that will work for all
- Supply constraints to optimization so that tool does not produce a design that is infeasible from a protection standpoint
- Develop optimization constraints for different protection functions and schemes:
 - 50 (instantaneous overcurrent), 51 (timed overcurrent), 87 (differential protection), 27 (undervoltage), 59 (overvoltage), etc.
- Example:
 - How far apart do the protection elements (50) need to be to ensure coordination?

Approach (cont.)

- Develop cost estimates based on scheme:
 - Differential, Direct Transfer Trip, Pilot Schemes, etc.
- The product of the optimization will not be a design for a protected system. A detailed protection system will still need to be designed (see validation section)

Example formulation:


Instantaneous Overcurrent (50)

- Determine the minimum distance between Instantaneous Overcurrent (IOC) elements on a radial system to add as a constraint to the design tool
- IOC elements may be part of reclosers, relays, etc.
- Simple example using a radial circuit with no downstream DER

Problem statement: How close can two IOC elements be such that the upstream IOC element does not trip for a fault downstream of the downstream IOC element?

Example formulation:

Instantaneous Overcurrent (50)

IOC₀ – Feeder IOC element (often owed by transmission)

IOC₁ – First IOC element for coordination

IOC₂ – First downstream IOC element for coordination

B_0, B_1, \dots, B_n – Breakers controlled by IOC elements

I_{PU_n} = Pickup current for IOC_n

I_{PCT} = Current transformer primary rating

I_{SCT} = Current transformer secondary rating

K_{CTA} = CT accuracy

K_{SR} = Pick-up dial setting resolution

K_{CT} = I_{PCT} / I_{SCT}

Z_s = Source Impedance

Z_n = Series impedance from source to IOC_n

I_{F_n} = Fault current at IOC_n

Example formulation:

Instantaneous Overcurrent (50)

For coordination on a radial circuit with radial flow:

$$I_{PU_0} > I_{PU_1} > \dots > I_{PU_n}$$

Minimum detectable current ΔI_{MIN} is the greater of:

$$K_{SR} * K_{CT} \quad (\text{Setting resolution} * \text{CT ratio})$$

$$K_{CTA} * I_{F_n} \quad (\text{CT Accuracy} * \text{Fault Current})$$

$$K_{CTA} * I_{PCT} \quad (\text{same as above max current is assumed})$$

Minimum Impedance in terms of known quantities is given by:

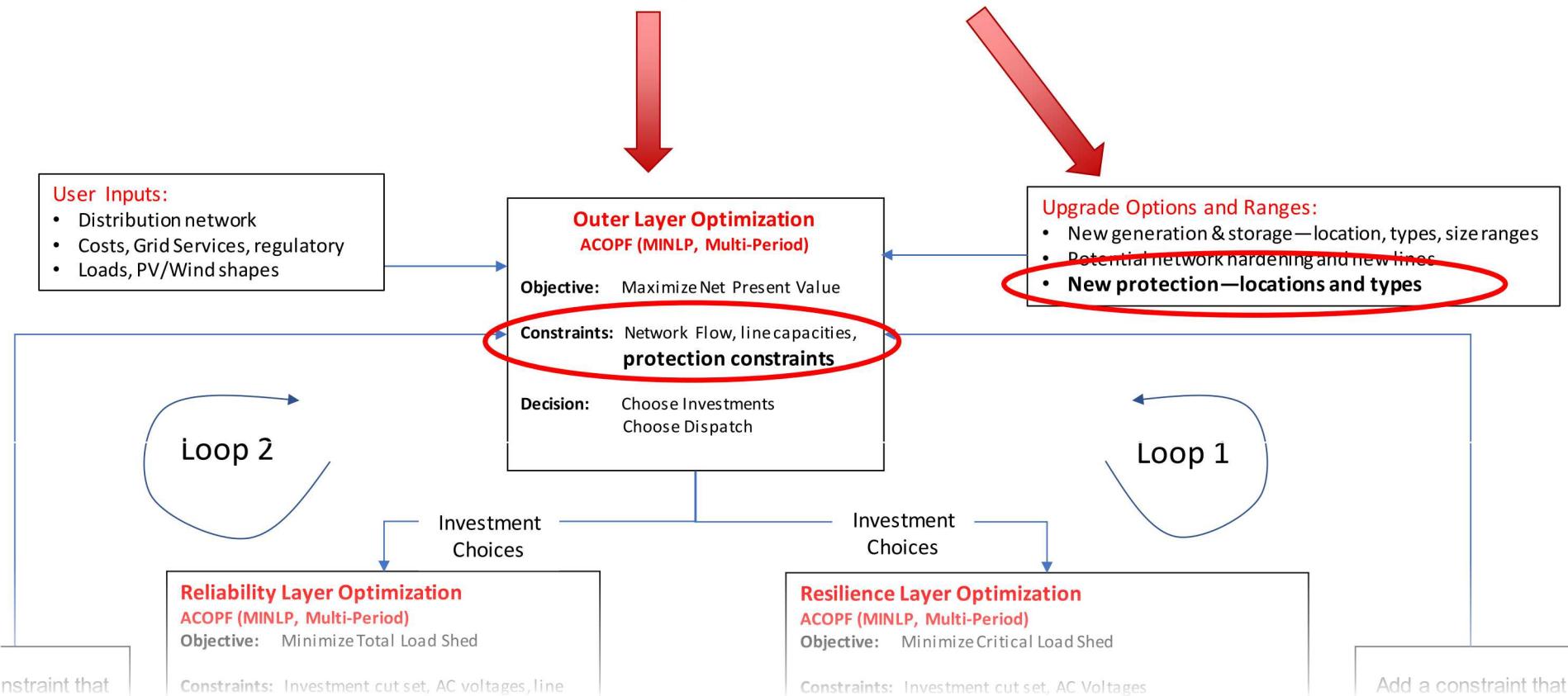
$$Z_{MIN} = \Delta I_{MIN} * Z_1^2 / (V_s - \Delta I_{MIN} * Z_1)$$

Other constraints: minimum relay pick-up settings, CT accuracy range, etc.

Example formulation:

Instantaneous Overcurrent (50)

For a fault current of 300 A and a CT accuracy of 5%, the minimum detectable current difference is 15 A (1).


For a Setting Resolution of .1 and a CT ratio of $500/5 = 100$, the minimum coordination current difference is 10 A (2).

At 300 A fault current on a 7.62 kV system, $Z_1 = 7,620 / 300 = 25.4 \Omega$

Using the greater of (1) and (2), the minimum impedance between IOC elements is $15*25.4^2 / (7,620 - 15*25.4) = 1.33 \Omega$

Protection Constraint Integration With OD&O

- Protection design determines:
 - Investment options – protection devices, protection schemes
 - Costs of the protection investments
 - Constraints of the potential protection investment locations

Protection Investment Problem

Reclosers and switch locations
are a decision variable

Those decision variables are constrained by
the ability to ensure the system is protected

Decision variables

Constraints

- Generation investment (Diesel, Solar, Wind)
- Storage investment
- Branch investment
- Switchgear investment

- Upper-bound on budget
- Investment location constraints
- Protection coordination constraints

t=0

Technology investment decisions

t=1

Operating decisions

Time Coupling
Constraints

t=2

Operating decisions

t=T

Operating decisions

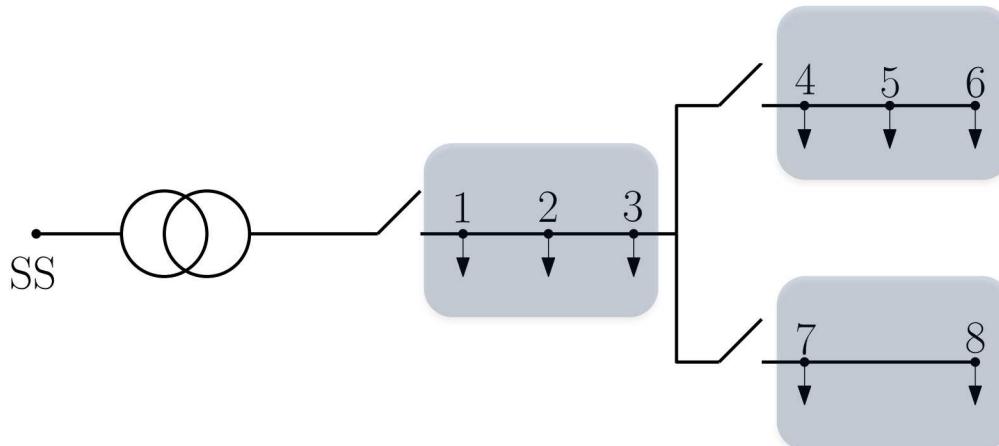
- Power dispatch for generators
- Battery control
- Switchgear operations

- 3-Phase Power flow physics
- N-1 security constraints
- Thermal, voltage and generator limits
- Ramping constraints
- Battery state of charge
- Battery efficiency curves
- Resilience and reliability constraints
- Generator minimum up/down-time
- Stability constraints

Example formulation: Instantaneous Overcurrent (50)

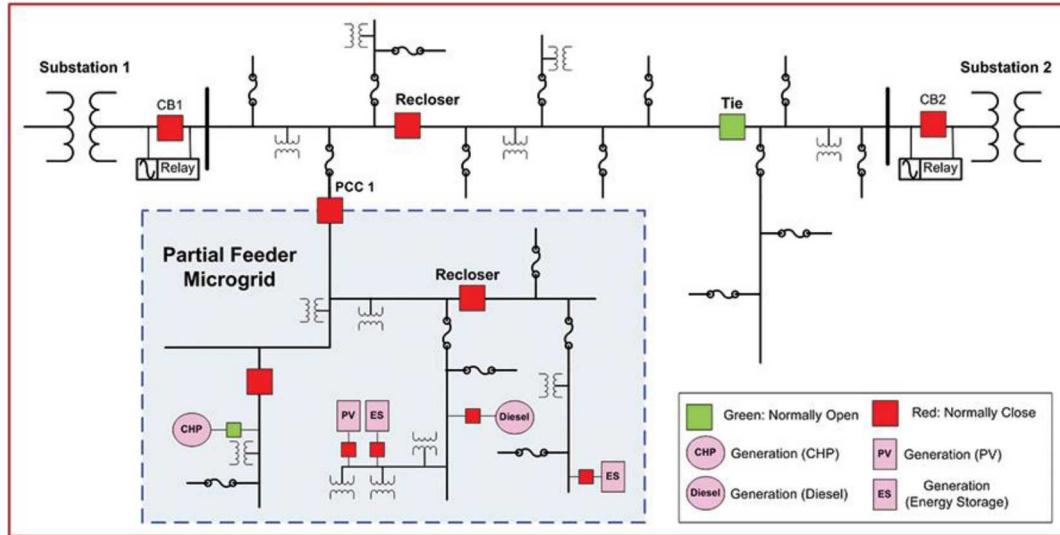
- For overcurrent protection, distance constraint applies to the investment variable $w_{i,j}^s \in \{0,1\}$ - Binary variable indicating if a switch is built on line (i,j)
- If $w_{1,2}^s = 1$ (adding a switch to line 1-2), then adjacent line switch investment $w_{2,3}^s$ cannot equal 1 because it is too close
 - New constraint: $w_{1,2}^s + w_{2,3}^s \leq 1$
- Explicit constraint in outer problem for the subset of lines that can have switches together
 - Based on impedance matrix (Y), connectivity and impedances are known. Process the matrix for constraints of sections that cannot have switches at the same time
- This constraint is only for coordinating over-current protection
 - Other investment options, such as relays with communication-assisted protection ($w_{i,j}^{cs}$), will be added with different constraints
 - $c_{i,j}^{cs}$ (cost of investment $w_{i,j}^{cs}$) $> c_{i,j}^s$ (cost of investment $w_{i,j}^s$)
 - Additional constraints for communication requirements

Investment variables:
 $w_{ij}^s \in \{0, 1\}$ - Binary variable indicating if a switch is built on line (i,j)
 $w_{ij}^l \in \{0, 1\}$ - Binary variable indicating if a line is lengthened
 $w_i^b \in \{0, 1\}$ - Binary variable indicating if a line is built
 $w_i^g \in \{0, 1\}$ - Binary variable indicating if a generator is built
 $g_i^{pv} \in \mathbb{R}$ - The amount of photovoltaic generation
 $g_i^w \in \mathbb{R}$ - The amount of wind generation


Time dependent variables:
 $w_{ij}^t \in \{0, 1\}$ - Binary variable indicating if a switch is built on line (i,j) at time t
 $x_g^t \in \{0, 1\}$ - active/inactive status of a generator at time t
 $y_g^t \in \{0, 1\}$ - start-up status for generator g at time t
 $z_g^t \in \{0, 1\}$ - shut-down status for generator g at time t

OD&O Protection Constraint Data Flow

- Inputs
 - Circuit topology and impedance matrix (Y)
- Protection Constraint Calculation
 - Process Y for protection constraint matrix (P) combinations of lines that cannot both have switches
- Outputs
 - Add protection constraint to OD&O optimization in the form $P \cdot w^s \leq 1$
 - Constraint only impacts the investment variables (what are the investment choices, potential locations, and costs)
- Protection constraint is preprocessed and updated during the optimization when new lines are built


Protection and Reconfiguration Considerations

- Protection constraints apply to the outer problem of OD&O (investment decision)
 - Those investment decisions of protection devices feed into the OD&O inner problem (optimal reconfiguration for SAIFI and resilience)
 - The inner problem assumes that protection operates and is correctly coordinated, isolating as little of the network as possible
- Protection equipment vs. Distribution Automation equipment
 - Safety and isolation (protection) vs. reconfiguration
 - Reconfiguration with switches (automated, load break, fault break, off load)

Validation

- Once the tool creates a design, a detailed protection system will need to be developed for that design
- The protection system will then be evaluated using simulation
- The constraints will be considered validated if an adequate protection scheme can be developed for design

QUESTIONS?