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= Review of Existing Tools and Projects

= Protection of Networked Microgrids

= Approach to Protection Design

= Example Constraint for Protection Design

= |ntegration of Protection Constraints with OD&O

= Validation
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= Review of protection, microgrid protection, and networked
microgrid protection projects

= |dentification of needs

= Protection for microgrids / networked microgrids is an emerging field.
Unlike other protection arenas, there is little utility / industry
experience to draw from.
= None of these are in an optimization framework

= There is extra complexity in an optimization framework because there
is not a fixed network topology. Optimal design is a fluidly changing
network design that has to include protection

= ORNL Examples:

= Applying model-based adaptive relay to EPB networked microgrid
= Distributed FLISR and self-healing grids on Duke microgrid

= ORNL Deliverable — To be completed December 2018
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= QObjective: Incorporate protection considerations into
networked microgrid design

= Networked microgrid designs must be protectable if industry
is to adopt them. Wide variety of protection options

= Example: Overcurrent/fuses vs. Communication based approaches

= Protection can be a significant portion of a microgrid’s cost,
so optimization with cost as an objective should consider
protection

= First networked microgrid design effort to include protection
considerations




National

Networked Microgrid Protection ) 2,

%NOAK RIDGE

ational Laboratory

= Differences for networked microgrid protection than
microgrid protection

= Networked microgrids may involve utility assets — this changes the
rules and standards for protection

= Potentially multiple owners with the requirement to coordinate
communications and controls for adaptive and pilot protection

= More variations in topologies and reconfigurations

= Each microgrid may involve different types of generation

= Switching transients (inrush) when connecting islanded microgrids to

additional loads or other microgrids
= This project considers existing microgrid protection

techniques (leveraging other DOE research), but the
protection schemes may have to be modified to address
these differences

6




Sandia
m National
Laboratories

S_QOAK RIDGE

National Labor

Approach

= Do not attempt to rigidly define a networked microgrid
protection system that will work for all

= Supply constraints to optimization so that tool does not
produce a design that is infeasible from a protection
standpoint

= Develop optimization constraints for different protection
functions and schemes:
= 50 (instantaneous overcurrent), 51 (timed overcurrent), 87
(differential protection), 27 (undervoltage), 59 (overvoltage), etc.
= Example:

= How far apart do the protection elements (50) need to be to ensure
coordination?
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= Develop cost estimates based on scheme:
= Differential, Direct Transfer Trip, Pilot Schemes, etc.

= The product of the optimization will not be a design for a
protected system. A detailed protection system will still need
to be designed (see validation section)
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= Determine the minimum distance between Instantaneous
Overcurrent (I0C) elements on a radial system to add as a
constraint to the design tool

= |OC elements may be part of reclosers, relays, etc.

= Simple example using a radial circuit with no downstream
DER

Problem statement: How close can two IOC elements be such
that the upstream I0C element does not trip for a fault
downstream of the downstream 10C element?
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responsibility responsibility

I0C, — Feeder I0C element (often owed by I, = Current transformer primary rating
transmission) Iscr = Current transformer secondary rating

I0C, — First 10C element for coordination Kera = CT accuracy

10C, — First downstream IOC element for Ksg = Pick-up dial setting resolution

e Ker=| I
coordination cr= e / ser
Z, = Source Impedance

B, By, ..., B, — Breakers controlled by 10C
elements Z, = Series impedance from source to |I0C,

lpy_n = Pickup current for 10C, l¢ , = Fault current at 10C,
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For coordination on a radial circuit with radial flow:
> | >

lpy 0~ lpu1” PU_n

Minimum detectable current Al is the greater of:

K * Ko (Setting resolution * CT ratio)
Kera™ Ie n (CT Accuracy * Fault Current )
*

Kera * loer (same as above max current is assumed)

Minimum Impedance in terms of known quantities is given by:
Zyin = Dlyiy *Z4% / (Vs = Blyn*Z4)

Other constraints: minimum relay pick-up settings, CT accuracy

range, etc.
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For a fault current of 300 A and a CT accuracy of 5%, the
minimum detectable current difference is 15 A (1).

For a Setting Resolution of .1 and a CT ratio of 500/5 = 100, the
minimum coordination current difference is 10 A (2).

At 300 A fault current on a 7.62 kV system, Z, = 7,620 / 300 =
25.4 Q)

Using the greater of (1) and (2), the minimum impedance
between |IOC elements is 15*25.4%2 / (7,620 — 15*%25.4) =1.33 Q
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= Protection design determines:
= |nvestment options — protection devices, protection schemes
= Costs of the protection investments
= Constraints of the potential protection investment locations

Wer Inpts: Upgrade Options and Ranges:
* Distributionnetwark Quver Layer Qptimiatan . pﬁlew eanation&stora ge—.Iocation types, sizeranges
* Costs, Grid Services, regulatory ACOPF (MINLP, Multi-Period) . £ : o Y PES, E
* Loads, PV/Wind shapes 5 . .
Objective: Maximize Net Present Value < * New protection—locations and types
\* E—
#£ Constraints: Network Flow, line capacities,
K\ protection constraints_~

Decision: Choose Investments
Choose Dispatch

Loop 2 Loop 1
Investment Investment

Choices Choices
y

Reliability Layer Optimization Resilience Layer Optimization
ACOPF (MINLP, Multi-Period) ACOPF (MINLP, Multi-Period)
—l Objective: MinimizeTotal Load Shed Objective: MinimizeCritical Load Shed
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Those decision variables are constrained by
the ability to ensure the system is protected

Decision variables Constraints

Reclosers and switch locations
are a decision variable

Time Coupling
Constraints
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= For overcurrent protection, distance constraint applies to the investment
variable w;’; € {0,1} - Binary variable indicating if a switch is built on line (i)

= If wi, = 1 (adding a switch to line 1-2), then adjacent line switch investment

W5 5 cannot equal 1 because it is too close Investment variables:
! qwfj € {0, 1} - Binary variable indice
= New constraint: Wf,z + Wig’g < 1 wﬁj € {0, 1} - Binary variable indica

w? € {0,1} - Binary variable indica
w! € {0,1} - Binary variable indica

= Explicit constraint in outer problem for the subset of g% € R - The amount of photovolts
lines that can have switches together g S Whenmsnnd @y aliene)

Time dependent variables:
. . . . t . . . .
= Based on impedance matrix (Y), connectivity and g €10, L} - Binmey-varinble hdien

x! € {0, 1} - active/inactive status

impedances are known. Process the matrix for constraints y;f € {0,1} - start-up status for gen
of sections that cannot have switches at the same time

2z, € {0,1} - shut-down status for g

= This constraint is only for coordinating over-current protection

= QOther investment options, such as relays with communication-assisted
protection (Wl-cj-), will be added with different constraints

= c;; (cost of investment w;;j) > c;; (cost of investment w; ;)

= Additional constraints for communication requirements 15
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Inputs
= Circuit topology and impedance matrix (Y)
Protection Constraint Calculation

= Process Y for protection constraint matrix (P) combinations of lines that
cannot both have switches

Outputs

= Add protection constraint to OD&O optimization in the form P - w® <1

= Constraint only impacts the investment variables (what are the investment
choices, potential locations, and costs)

Protection constraint is preprocessed and updated during the
optimization when new lines are built
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= Protection constraints apply to the outer problem of OD&O (investment
decision)

= Those investment decisions of protection devices feed into the OD&O inner
problem (optimal reconfiguration for SAIFI and resilience)

= The inner problem assumes that protection operates and is correctly
coordinated, isolating as little of the network as possible

= Protection equipment vs. Distribution Automation equipment
= Safety and isolation (protection) vs. reconfiguration

= Reconfiguration with switches (automated, load break, fault break, off load)
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= Once the tool creates a design, a detailed protection system
will need to be developed for that design

= The protection system will then be evaluated using simulation

= The constraints will be considered validated if an adequate
protection scheme can be developed for design
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