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Hypersonic Trajectory Optimization Needs to Be
Completed More Rapidly

Current Practice

Three degree-of-freedom (3-DOF) model used to create an initial optimized
traj ectory

2. Refined with 6-DOF, software-in-the-loop simulation

3. Iteration between Monte Carlo simulation and subject matter expert
suggestions

Constraint violations avoided
Robustness increased
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Several months to
complete

Desired Operation

1. Only a few minutes to create optimal traj ectory to stationary target

2. Moving targets require optimal trajectories generated in flight

3. Rapidly optimized trajectories must still be
, Feasible

• Robust
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The Many Challenges of Hypersonic Rapid Trajectory
Generation (RTG)
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Conclusion

• Vehicle Complexity

Highly non-linear dynamics & aerodynamics

Heat management

Constraint Complexity

No-fly zones, instantaneous impact

Structures and stability

Survivability

Control surface limitations

Terminal conditions

Robustness Requirement
Safety

Critical missions

Short Time Window

Moving targets

----
No-fly Zon

Turn Rate

Constrained

Waypoint

Waypoint

Release site

New

Target Initial

Target
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Published Research Only Re-Optimizes an Existing
Hypersonic Trajectory

Trajectory Optimization for Hypersonic Vehicle After Disturbances[11
Qazi, Linshu & Elhabian, 2004
Previously developed nominal trajectory
3 types of disturbances: aerodynamic coefficients, specific impulse, inert ass
Used a pre-trained artificial neural network (ANN) to supply cost function in disturbed state
Optimized angle of attack profile with sequential quadratic programming (SQP)

Online Re-optimization of Hypersonic Vehicles After Damage or
Failure[21 Allwine, Fisher, Strahler, Lawrence, Oppenheimer & Doman, 2005
Adjustments to a nominal trajectory for: updated aerodynamics, reduced control authority
New aerodynamic surrogate models created with real time sensor information

3-D Trajectory Optimization for Lightly Constrained Hypersonic
Vehicles [31 Dong, Chao, Wang, & Yang, 2012
Start with nominal traj ectory
Bank angles and flight path angles optimized mid-flight to achieve changing down range and cross
range targets
Target errors in the order of 0.2 to 0.3km for 4,000 — 7,000 km flight
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Conclusion

Known target with nominal trajectory provided makes optimization much easier
We want to quickly generate the nominal trajectory for a new mission
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1 RTG Without a Nominal Trajectory Through Interaction
Between Optimizer and Vehicle Model
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Optimized tates

&)-iek+1, ik+N

Optimization

Variant

Vehicle Model

Variant

Using current states, optimal
solutions generated for the
remaining problem space

Model simulates vehicle
behavior for the next N time

steps

Current Vehicle State
Alc+.

What's the lowest fidelity vehicle model we can employ and still produce
feasible and robust solutions?

How does feedback rate between the optimizer and the vehicle model
affect the quality of the optimized trajectory?

Do aerodynamic surrogate models affect computational expense and
solution quality?
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10 1 Pseudospectral Trajectory Optimization Chosen for This
Investigation

How PS Optimization Works 

Starts with a traditional optimal control
problem[4]

Discretizes at Legendre-Gauss-
Lobatto/Radau nodes (shown to
produce most accurate approxlmations,
avoiding the Runge phenomenon[5][6])

3. Approximates states and controls with
global, orthogonal polynomials
(Chebyshev, Lagrange, etc) [7]
States and controls of the approximations are
constrained to have the exact values at the nodes

Derivatives of the interpolating polynomials must
exactly equal the problem dynamics at the nodes

4. Optimal Control problem is now a
Non-Linear Programming_problem and
can be solved numerically.n
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Optimizer

Vehicle Models

Aero Models

Missions

Results

Conclusion

Why PS Optimization ? 
Exact satisfaction of constraints[8]
Population-based methods enforce dynamics
constraints through penalty functions
Heavily influenced by weighting of those
penalties

Exact satisfaction of the system
dynamics [7]

Differential Dynamic Programming uses
approximations[9]

Converges, even without a close
guess[8]Pq

Indirect (variational) and population-based
methods need a good guess (a priori knowledge)
converge

Converges rapidly

Faster than population-based or direct
shooting[4][71

Improved with phases and a sparse solver[111[5]

Trusted software available[111[5]

DIDO

GPOPS-II



11 X-43 Used as TestVehicle
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X-43 chosen because
• Hypersonic[121

• Glide test flight trajectory data available for verify the models[131

Vehicle Model Fidelity Options
• Simple 3-DOF physics (Vinh[141)

3-D0F++

Flight angles (a, /3, 0)commanded directly

• Constraints on flight angle rates

• Improved gravity and atmospheric model

• Control surface deflections approximated with trim table

6-DOF — Low Fidelity

PID controller commands control surface deflections (5, , 5a, 5,) to
meet optimized flight angles

• Limits of deflection and deflection rate of control surfaces

6-DOF — High Fidelity

Dynamic Inversion Adaptive Controller[15] [16]

• Includes control surface slew-rates and other details

• Current "gold standard"

x (t)-
y (t)
Z(t)
V (t)
y(t)
_0(t)_

V cos y cos lp
V cos y sirup
—V sin y

—D
— g sin y

L cos — S sin g cos y

mV V
L sin + S cos (/)

mV cos y

www.sandia.gov/taos

Credit: NASA
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Aerodynamic Surrogate Models Created with Aim of
Reducing Computational Expense

X-43 Aero tables provided by NASA
Created using wind tunnel tests and CFD[17] [18]

CN , CA, Cy, C1, Cm, Cn, CN 8r, CA8rCy 8r, C 18r, Cm8r,

Cn8r, Cy 8a, C 18a, Cn8a as functions of M,a, 13, 6e,
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Side View

+X —

+NF

+PM
- •

+AF

+z

Credit: NASA

Trajectory simulation tools spend a large portion of their computation time querying the
aerodynamic coefficient database and interpolating.

• ASDL has employed surrogate models to reduce computational expense for conceptual
design[19] [20]

ASDL has also shown that creating aerodynamic surrogates that are accurate enough to be
useful is difficult even with multi-fidelity and adaptive sampling [20] [21] [22]

Surrogate models created for X-43 aero
48: 16 for each of 4 Mach regions

0.9532 < R2 < 0.99995

Kriging had better correlation than polynomial, artificial neural network, and radial basis functions

DAKOTA 

https://dakota.sandia.gov

  • Optimizer/model combos tested with and without surrogate models for aerodynamics



13 All Models Performed In Family with X-43 Test Flight
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—6-DOF TAOS



14 Trajectories Optimized for Two Representative Missions
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Mission 1 
• Long narrow corridor

of flight
• Hard turn near the

target

Mission 2 
• Shorter corridor of

flight
• Gentler turn at

higher speed
• Straighter flight near

target

Turn Rate

Constrained

Waypoint

Parachute Release

Target

Release site

Test Corridor maximize velocity)

11  

*not to scale

Waypoint

Turn Rate

Constrained

Waypoint

Parachute Release

Target

No-fly Zone

Release site

1000 ft Test Corridor (maximize velocity) .}

*not to scale
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Optimization with Look-up Tables and Surrogates
16 •

Produced Similar Trajectories
Aero Look-up Tables Ground Path Aero Surrogates
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Optimization with Aerodynamic Surrogates Hit Target
Exactly, Look-up Table Optimization Did Not

Aero Look-up Tables Trajectory Aero Surrogates
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18 I Aerodynamic Surrogates Facilitated Optimizer
Convergence

Aero Look-up Tables
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6-DOF

Comparison
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FiIOW , )11

Flight Angles Aero Surrogates
Flight angles

rook-up tables produce
non-smooth flight angle

commands and sub-optimal
solution
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1 Aerodynamic Surrogates Facilitated Optimizer
Convergence

Aero Look-up Tables Costates Aero Surrogates
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Feedback with Vehicle Simulation Improved Guidance
Solution
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1 Conclusion 1

Mission 1 Optimizer: 3-DOF with Surrogates Vehicle Model: 3-D0F++ with Tables
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• Target
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Feedback
Period (s)

None

60

30

30/60

Target Miss
Distance ft.

113778.7

742.2

2398.1

426.9

Maximum Constraint
Violation (ft.)

Miss distance
Freasonable for mission

objectives

1
8983.3 I

705.7

none

none

• A larger feedback period
being more accurate
suggested that the 3-DOF
vehicle model was more
maneuverable, especially in
difficult transonic region

• Investigated this possibility
with Mission 2

1
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Low Model Fidelity Produces Better Solutions Under
Simpler Flight Conditions
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3-DOF++
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Comparison

Mission 2 Optimizer: 3-DOF with Surrogates
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Trajectory

Scaled East Distance

Vehicle Model: 3-D0F++ with Tables

Feedback
Period

s

Final Target
Miss Distance

Waypoint
Miss

Distance ft

Maximum
Constraint

Violation ft
None 274947 70459 1626

Feedback 120s 48473 8209 1626—No

60s 5696 87 231—60s Feedback

30s 3299 399 none—30s Feedback

. Target 30/15s 308 225 none
— 30/15s

1 Conclusion 1
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Ground Path

_

Scaled East Distance

—No Feedback

—60s Feedback

 30s Feedback

Target

—30/155

Miss distance even less
than with Mission 1

• Most maneuvering done in
supersonic, rather than
transonic

• Expected improvement with
decreased feedback period

• Shows limitations of 3-DOF
model for complex mission
requirements
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Aerodynamic Look-up Tables Insufficient for
Pseudospectral Trajectory Optimization with DIDO
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NT
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Distance ft.

Maximum Constraint
Violation  ft.

None 139235 2227.7
60 49014 2962.1
30 206884 1182.2
15 81783 427.4
10 126309 264.9
5 60212 117.6

• Even with 5 second feedback
period (-3 hours of
computation time) couldn't
meet constraints

• Best target miss distance was
49,014 ft.

Feedback
Period s

Optimization Time Optimization Time
with Surro • ates s with Tables s

None 497 208
60 1526 934
30 3171 2010
15 7235 5122

Aerodynamic surrogates allow
convergence to solution
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3-DOF Vehicle Model Insufficient for Trajectory
Optimization Under Complex Flight Conditions
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1 3-DOF Vehicle Model Applicable to Simpler Trajectory
Optimization and Rapid Mission Space Exploration
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Mission 2 Optimizer: 3-DOF with Surrogates Vehicle Model: 6-DOF with Tables
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Trajectory optimization with a low-fidelity model in feedback with a
higher fidelity vehicle simulation has application if the limitations of

the vehicle and autopilot are considered
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TTarget miss distance similar to 3-
DOF++

Waypoint an order-of-magnitude
closer.

• All solutions match closely until difficult
transonic region

• Potential application to rapid mission
space exploration:
• Low fidelity models to quickly

optimize a large range of mission
trajectories

• Feasibility checked by higher
fidelity simulation
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1 Aerodynamic Look-up Tables Insufficient to Optimize in
Feedback with a 6-DOF Vehicle Simulation
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Distance ft.
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Violation ft.

None 1395972 2710
60 224637 658
30 124392 315

Aerodynamic surrogate
models show efficacy as

an enabler of
pseudospectral

trajectory optimization
for hypersonic vehicles
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Optimized Trajectories Using Different Model Fidelities
Compared Through Flight in Highest Fidelity Simulation
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Optimized Trajectories Using Different Model Fidelities
Compared Through Flight in Highest Fidelity Simulation
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29 Some Answers to Posed Research Questions

Introduction

T Motivation

L Research
Questions

E Methodology
T Results —1

Conclusion

• Rapid trajectory optimization is needed to utilize
hypersonic vehicles subject to complex constraints
and stringent safety and robustness requirements.

• Model fidelity studies are a necessary enabler for
rapid trajectory optimization
• Use enough fidelity to ensure feasibility and robustness
• Use as little fidelity as possible

• Lessen computation expense
• Expand operational flexibility
• Decrease launch timeframe

Turn Rate
Constrained

Waypoint0

No-fly Zone

Waypoint

Release 
0
site

No-fly Zone

x
1
\
‘

(
New
Target 1 Initial

Z3 Target

➢ What's the lowest fidelity vehicle model we can employ and still produce feasible and
robust solutions?

Depends on the complexity of the trajectory being optimized

➢ How does feedback period between the optimizer and the vehicle model affect the
quality of the optimized trajectory?

More than feedback period is important, but15 - 30 seconds appears sufficient
for solution, if a solution is possible at that fidelity

➢ Do aerodynamic surrogate models affect computational expense and solution quality?

Aerodynamic surrogates are show efficacy for pseudospectral optimization of hypersonic trajectories
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Conclusion

• What's the lowest fidelity vehicle model we can
employ and still produce feasible and robust
solutions?

Can we introduce constraints on the 3-DOF
optimization vehicle model to account for
more complex missions?

Can we use a more complex model (3-DOF++)

in the optimizer and still achieve rapid
convergence?

Turn Rate

Constrained

Waypoint9

New

Klarget

No-fly Zone

J

Waypoint

Initial
2 Target

• How does feedback period between the optimizer and the vehicle model affect the
quality of the optimized trajectory?

Would seeding higher-fidelity feedback loops with the results of lower-fidelity
optimization allow for RTG without a nominal trajectory?

• Are there other potential uses for the feedback between optimizer and simulation?

Lan we rapidly define a mission space?
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