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INTRODUCTION

Overarching goal of collaboration P204

share knowledge and experience in all areas relevant to performing and

analyzing experiments on phase transformation kinetics in metals, including:

* experiment design for both pulsed-power and gun drivers

* temperature, X-ray diffraction (XRD), and other diagnostics
* pre-heating (and maybe pre-cooling?) of samples

* analysis of experimental data

* materials modeling of phase transformations with kinetics

Additional goals for this kickoff meeting

* define specific collaboration projects for continuing work
* experiments either newly proposed, or already part of lab’s program

* plan future in-person and remote-video meetings to ensure continuity

NNSA:

Jean-Paul Davis

Dan Dolan, Tom Hartsfield (pyrometry)
Tom Ao, Patricia Kalita (dynamic XRD)
Justin Brown (pre-heating)

CEA:

Camille Chauvin
Thierry d’Almeida
Fréderic Zucchini
Francis Lassalle



The Z Machine, refurbished in 2007, saw subsequent upgrades of
3 | Laser-Triggered Gas Switches and Pulse-Forming Lines

energy storage section (3215 m? oil): stores 23 MJ in 36 banks of 60 capacitors )
(each 2.3 uF), charged in parallel (90 kV), discharged in series (5.4 MV) 1*
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pulse-forming section (945 m3 H,0): laser-triggered SF
gas switches & H,0 spark-gap switches compress pulse to
100 ns rise time, tri-plates reduce 36 lines to 18, convolute
reduces further to 4 radial feed gaps center section (1.5 mPa vacuum): magnetically insulated transmission lines
deliver up to 26 MA pulse to load, convolute reduces 4 feed gaps to 1



Planar shockless (and shock-ramp) compression to 400+ GPa is
4 | possible on the Z machine using stripline short-circuit loads

( N\

* current pulse of 7-26 MA delivered to load

* controllable pulse shape, rise time 100-1500 ns

* stripline = parallel flat-plate electrodes shorted at one end, identical loading of sample pairs

* magnetic (J*xB) force induces ramped stress wave in electrode material

* stress wave propagates into ambient material, de-coupled from magnetic diffusion front

)
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5 ‘ Switch settings on 36 pulse lines control the pulse shape

output-transmission-line 1 (OTL1)

laser-triggered gas switch

output-transmission-line 2 (OTL2)

intermediate-store (IS) capacitor pulse-forming line (PFL)

water convolute

insulator stack

(not shown)
Marx timing

Each group of 4
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Shorted, 3.5cm, 7.0 cm, H main water switc
or standard 6-14 cm

h (3 channels)

M pre-pulse w;ter switch (4 channels)
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Transmission-line circuit model of Z used to determine desired
machine settings

e

Marx

2-D OTL2 (x18)

B. T. Hutsel et al, Phys. Rev. Accel. Beams 21, 030401 (2018)

1-D Pulse-Forming Line (x36)

* Transmission-line elements
* Defined by impedance Z, length (time) 7
* Have capacitance C=t/Z, inductance L=7Z7

* Specialized routines for switches, losses, time-dependent L

:
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Pulse-Line Pair (x18) 1-D MITL (x4)
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Z can produce a wide range

Showing 54 of 190 measured MITL-current
waveforms found on my computer
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g8 I Sample thickness constrained by reverberation and pulse shaping

sample
)

VISAR
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current
—
electrode
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Narrow (highest pressure)
stripline is ¥11 mm wide,
samples 6-8 mm wide:

edge waves & pulse shape
constrain maximum thickness

— must maximize difference in thickness between samples

* requirement for 1-D shock-free loading limits maximum thickness
— imprecision in pulse shaping makes ideal shock-up distance difficult to attain

. uncertainty in ¢, = AX /At depends on relative uncertainty in thickness difference

e arrival of back-surface reflection at sample’s front surface (reverberation) limits

minimum thickness to achieve desired stress state

* increasing rise time to delay shock formation in thick sample reduces peak stress at
~ front surface of thin sample
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Electrode thickness constrained by desired MHD coupling
9 I (reverberation inside the electrode)
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Shock-ramp loading: double-ramp pulse shape “holds”
a Hugoniot state in the sample before ramping

1.2mm Sn
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* Small flight gap causes shock, then
ramp in sample
* Analysis assumes shock state is known
* Tin shocked to liquid phase (?), then
isentropically compressed

C.T. Seagle et al, Appl. Phys. Let. 102, 244104 (2013)
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Reverberation across sample and MHD coupling across
11 | electrode can be even more important in shock-ramp design

longitudinal stress (GPa) or 0.5 x B-field (T)
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Precise, uniform, repeatable shock-ramp flight gap obtained by
12 I diamond-tool milling the electrode panel itself

Surface Map
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13 | Existing data on Sn: shock
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14 | Existing data on Sn: more shock
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15 | Existing data on Sn: even more shock
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Existing data on Sn: ramp (including pre-heat) and shock-ramp

J.-P. Davis & D.B. Hayes, AIP Conf. Proc. 706, 163 (2004)
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LASLO (Lagrangian Analysis and Simulation of Loading in One
18 | dimension) is a |-D research hydro-code for experiment design/analysis

Originally developed ¢2010 in C++ by Josh Robbins, now maintained by John Carpenter
Replaces venerable WONDY code that was written in pre-77 Fortran (!)

Major goal is ease of development/implementation of material models, physics, etc.
Generalized 1-D: velocity, stress, etc. are 3-D but vary only in one direction

Includes 1-D MHD physics for simulation of magnetic loading, electromechanics for PZT

Features:
> Central-differencing time integration, will soon have more accurate predictor multi-corrector

> Many options for non-uniform element spacing
> Non-uniform initial conditions, graded-property materials
> Initial gaps between Lagrangian mesh blocks close naturally (e.g;, for shock-ramp)

(@]

Choice of tracking isotropic or anisotropic stress state (two versions of many strength models)
> New material models or derived variables can be written in Python, used without re-compiling Laslo

o

Relatively simple to integrate new and existing models written in Fortran or C++

Does NOT (yet) include thermal conduction, spall/fracture, non-cartesian coordinates



19 | The list of material models available in Laslo is extensive and growing

Equations of State
o Ideal Gas

° Mie-Gruneisen (U-U,,, powet-law, arbitrary)
Extended Vinet
Tabular (Sesame, UTri)

piezo- & ferro-ceramics
Hayes’ Wondy STAT5 multi-phase w/ kinetics

(o]

(e]

(e]

o

Plasticity

o Radial return
o Linear elastic
° Arbitrary (anisotropic) plastic

° Quasi-elastic (Johnson’s pinned-loop model)

Electrical Conductivity
° Linear conductor
° Lee-More-Desjarlais
° Tabular (Sesame)

Strength (yield stress)
° Linear plastic, elastic-plastic
> Johnson-Cook

o

Steinberg-Guinan-Lund
Mechanical Threshold Stress
Preston-Tonks-Wallace

o}

(¢]

Meta-models
° Kinetics Phase Transition (Greeff kinetics)
> Reuss/Voigt mixtures

° P-lambda porosity

Python derived variable
> Apparent velocity through window



Lagrangian analysis can extract compressibility from

20

0/0)
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u* = “compression velocity”
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~ « in-situ measurements > Direct Lagrangian Analysis (DLA)

* real measurements are free-surface or window-interface

= map measured u(?) into in-situ u*(¢), then apply DLA

= shockless compression: map by iterative characteristics technique?
» referred to as Iterative Lagrangian Analysis (ILA)

® shock-ramp: map by backward integration with minimization
» both of these assume single-valued material response
» both encompass dual-sample and single-sample approaches

= strength in release: map by simulation-based transfer function?

1S. D. Rothman & J. Maw, J. Physique IV 134, p745 (2006)
2J.L. Brown etal, J. Appl. Phys. 114, 223518 (2013)
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Iterative Lagrangian analysis (ILA) can recover second-phase
21 | wave speed above fast transition of small volume change

|
T Sjostrum et al,
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