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2 I INTRODUCTION

Overarching goal of collaboration P204 

share knowledge and experience in all areas relevant to performing and
analyzing experiments on phase transformation kinetics in metals, including:
• experiment design for both pulsed-power and gun drivers

• temperature, X-ray diffraction (XRD), and other diagnostics

• pre-heating (and maybe pre-cooling?) of samples

• analysis of experimental data NNSA:
• materials modeling of phase transformations with kinetics Jean-Paul Davis

Dan Dolan, Tom Hartsfield (pyrometry)
Additional goals for this kickoff meeting Tom Ao, Patricia Kalita (dynamic XRD)

define specific collaboration projects for continuing work Justin Brown (pre-heating)

• experiments either newly proposed, or already part of lab's program

• plan future in-person and remote-video meetings to ensure continuity CEA:
Camille Chauvin
Thierry d'Almeida
Frederic Zucchini
Fran(is Lassalle



The Z Machine, refurbished in 2007, saw subsequent upgrades of
3 Laser-Triggered Gas Switches and Pulse-Forming Lines

energy storage section (3215 m3 oil): stores 23 MJ in 36 banks of 60 capacitors
(each 2.3 pF), charged in parallel (90 kV), discharged in series (5.4 MV)
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WATER

VACUUM
33 meters

pulse-forming section (945 m3 H20): laser-triggered SF6
gas switches & H20 spark-gap switches compress pulse to
100 ns rise time, tri-plates reduce 36 lines to 18, convolute
reduces further to 4 radial feed gaps

WATER

OIL

center section (1.5 mPa vacuum): magnetically insulated transmission lines
deliver up to 26 MA pulse to load, convolute reduces 4 feed gaps to 1



1 
Planar shockless (and shock-ramp) compression to 400+ GPa is

4 possible on the Z machine using stripline short-circuit loads

• current pulse of 7-26 MA delivered to load

• controllable pulse shape, rise time 100-1500 ns

• stripline = parallel flat-plate electrodes shorted at one end, identical loading of sample pairs

• magnetic (J ><B) force induces ramped stress wave in electrode material

• stress wave propagates into ambient material, de-coupled from magnetic diffusion front

• sound speed c increases with pressure (normal materials)

• ramp steepens into a shock
c2=WPIMs

cL = P choo
1 mm111
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5 Switch settings on 36 pulse lines control the pulse shape

laser-triggered gas switch

intermediate-store (IS) capacitor

1
(not shown)
Marx timing

If
Each group of 4

assigned to one
of 2 triggers 1 1 I

Shorted, 3.5 cm, 7.0 cm, 4,...

or standard 6-14 cm

Shorted, or standard 2-5 cm

OIL  

output-transmission-line 1 (OTL1)

pulse-forming line (PFL)

main water switch (3 channels)

Lutput-transmission-line 2 (OTL2)

pre-pulse water switch (4 channels)

WATER

water convolute

i

Ensulator stack

VACUUM



I Transmission-line circuit model of Z used to determine desired
6 machine settings

Marx

  ;70-71

B. T. Hutsel et al, Phys. Rev. Accel. Beams 21, 030401 (2018)

1-D Pulse-Forming Line (x36)
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• Transmission-line elements

• Defined by impedance Z, length (time)

• Have capacitance C= r /Z, inductance L= zZ

• Specialized routines for switches, losses, time-dependent L

Pulse-Line Pair (x18) 1-D MITL (x4)

Load



7 I Z can produce a wide range of pulse shapes
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8 Sample thickness constrained by reverberation and pulse shaping
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• requirement for 1-D shock-free loading limits maximum thickness
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Electrode thickness constrained by desired MHD coupling
9 (reverberation inside the electrode)
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Shock-ramp loading: double-ramp pulse shape "holds"
10 a Hugoniot state in the sample before ramping
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• Small flight gap causes shock, then
ramp in sample
• Analysis assumes shock state is known
• Tin shocked to liquid phase (?), then
isentropically compressed

C. T. Seagle et al, Appl. Phys. Let. 102, 244104 (2013)
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longitudinal stress (GPa) or 0.5 x B-field (T)
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Precise, uniform, repeatable shock-ramp flight gap obtained by
12 diamond-tool milling the electrode panel itself

Size . ram

Size Y 10.60 ram Trimmed: 0 Filter Low Wavelen: pin



13 I Existing data on Sn: shock
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14 Existing data on Sn: more shock
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15 I Existing data on Sn: even more shock
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1 6 I Existing data on Sn: ramp (including pre-heat) and shock-ramp

J.-P. Davis & D.B. Hayes, AIP Conf. Proc. 706, 163 (2004)
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17 I Existing data on Sn: static and dynamic XRD
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LASLO (Lagrangian Analysis and Simulation of Loading in One
18 dimension) is a I -D research hydro-code for experiment design/analysis

Originally developed c2010 in C++ by Josh Robbins, now maintained by _John Carpenter

Replaces venerable WONDY code that was written in pre-77 Fortran (!)

Major goal is ease of development/implementation of material models, physics, etc.

Generalized 1-D: velocity, stress, etc. are 3-D but vary only in one direction

Includes 1-D MHD physics for simulation of magnetic loading, electromechanics for PZT

Features:
o Central-differencing time integration, will soon have more accurate predictor multi-corrector
o Many options for non-uniform element spacing
o Non-uniform initial conditions, graded-property materials
o Initial gaps between Lagrangian mesh blocks close naturally (e.g., for shock-ramp)
o Choice of tracking isotropic or anisotropic stress state (two versions of many strength models)
New material models or derived variables can be written in Python, used without re-compiling Laslo
Relatively simple to integrate new and existing models written in Fortran or C++

Does NOT (yet) include thermal conduction, spall/fracture, non-cartesian coordinates



19 I The list of material models available in Laslo is extensive and growing

Equations of State
O Ideal Gas
o Mie-Gruneisen (Us-Up, power-law, arbitrary)

O Extended Vinet

Tabular (Sesame, UTri)

O piezo- & ferro-ceramics

o Hayes' Wondy STAT5 multi-phase w/ kinetics

Plasticity
- Radial return

O Linear elastic

O Arbitrary (anisotropic) plastic

o Quasi-elastic (Johnson's pinned-loop model)

Electrical Conductivity
O Linear conductor

o Lee-More-Desjarlais

O Tabular (Sesame)

Strength (yield stress)
O Linear plastic, elastic-plastic
o Johnson-Cook

O Steinberg-Guinan-Lund

O Mechanical Threshold Stress

o Preston-Tonks-Wallace

Meta-models
o Kinetics Phase Transition (Greeff kinetics)

O Reuss/Voigt mixtures

o P-lambda porosity

Python derived variable
Apparent velocity through window



Lagrangian analysis can extract compressibility from velocimetry

up

)

measured

map windowed to

in-situ

jci
00

U in-situ

dux = poc,du*

d p =

P 

du*

2 POCL

x material

sponse

Lagrangian analys

ries 

At(u*) = AX cL(u*)

iterate

• in-situ measurements 4 Direct Lagrangian Analysis (DLA)

• real measurements are free-surface or window-interface
• map measured u(t) into in-situ u*(t), then apply DLA
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Iterative Lagrangian analysis (ILA) can recover second-phase
21 wave speed above fast transition of small volume change
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More generally, when ILA converges post-transition, the
22 apparent wave speed is not related to material sound speed
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