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3 Domain Decomposition
Domain Decomposition generally means the splitting of a partial differential equation (PDE) into coupled
problems on smaller domains forming a partition of the original domain, such that the solution to the
partitioned problem is the same as the original unpartitioned problem.

This is commonly driven by the desire to utilize parallel computers.

Early drivers for domain decomposition methods arose from an
inability to fit large computational models into memory.

Massively parallel computers make previously intractable problems
possible, but come with the cost of developing algorithmic solution
methods that parallelize well.

We're being pressed to find and exploit more parallelism in our
algorithms. Need million- and billion-way parallelism.

Summit at ORNL is currently world's
fastest computer at 200 petaflops
(200,000 trillion floating point ops

per second)

One would reasonably expect our domain decomposition story to begin with the advent of parallel
computing. However, our story begins in the mid-1800s. The following historical exposition is taken from [1].

[1] Gander M, Wanner G (2013) The origins of the alternating Schwarz method. In: Erhel J, Gander M, Halpern L, Pichot G, Sassi T, Widlund 0
(eds) Domain decomposition methods in science and engineering XXI, Lecture Notes in Computational Science and Engineering. Springer,
Berlin, pp 415-422



4 The Riemann Mapping Theorem
• Bernhard Riemann studied at the University of Berlin from 1847-1849.
• During his time of study, Carl Gustav Jacob Jacobi, Peter Gustav Lejeune Dirichlet,

Jakob Steiner, and Gotthold Eisenstein taught there. Riemann's advisor was C.F. Gauss.
• Gauss did not praise other mathematicians easily, but wrote this about Riemann:*

Bernhard Riemann

"-ihe manuscript submitted by Riemann is a testament of the
thorough and deep studies by the author in the area to which
the treated subject belongs; of an aspiring and truly
mathematical research spirit, and of a glorious, productive
self-activity. The presentation is comprehensive and concise,
partly even elegant: the major part of the readers would
however in some parts still wish for more transparency and
better arrangement. As a whole, it is a dignified valuable
work, which does not only satisfy the requirement one usually
imposes on a manuscript to obtain a PhD degree, but goes
very far beyond.

The mathematics exam I will do myself. I prefer Sunday or
Friday, and in the afternoon at 5 or 5:30 pm. I would also be
available in the morning at 11 am. I assume that the exam will
.1ot be before next week.

* R. Remmert. Funktionentheorie. Springer, 1991.



5 The Riemann Mapping Theorem
• Riemann's thesis contained the foundation of analytic function theory.
• This included the Riemann Mapping Theorem:

"Two simply connected surfaces can always be mapped one to the other, such that
each point on the former moves continuously with the point on the latter..."

• Riemann gave a constructive proof:
• We need to find an analytic function f which maps 0 to the unit disk and one point zo E 0

into O. We thus set f(z) := (z-zo) eg(z), where g=u+iv is an analytic function to be
determined, in order to ensure that zo is the only point mapped into zero.

• In order to arrive from the boundary an to the boundary of the disk with the mapping, we
must have for all z E an that l f(z) l =1, which implies that

1 = l f(z) l = l (z-zo)eu+iv I = I (z-z0) l eu u(z) = -log l z-zo l , vzE an
• Since g is analytic, the real part u of g satisfies Laplace's equation V2u = 0 on 0, with the

boundary values given above.
• It thus suffices to solve for u, construct v using the Cauchy-Riemann equations,

Ou = Ov Ou N= _
Ox Oy ' Oy Ox

and then the construction of f is complete.



6 The Riemann Mapping Theorem
• But there's a problem: Riemann assumed that a solution to Laplace's equation on an arbitrary domain

with given boundary conditions exists. Was that really true?
• When confronted with this question, Riemann said *

"To this end, one can often invoke a principle for finding a function that solves Laplace's
equation, which Dirichlet has been using in his lectures over the past few years."

• Riemann called this "Dirichlet's Principle".
• Suppose we want to minimize

fi au au  1 dxdE[u(x, y)] = .1110(3 y3 ax 3 ay / y
n

where u(x,y) takes on a specified value on ao. The solution must satisfy the Euler-Lagrange equation
af a af a Of 

= 0
au ax aux ay auy

• As a specific example, suppose

i au 2 (au 2
f(x, y) =   +  

ax, alf,
a2u a2u

• Then, the Euler-Lagrange equation reduces to Laplace's equation, V2u(x, y) = 2 + 2 = 0

* Berhard Riemann. Grundlagen fur eine allgemeine Theorie der Functionen einer aX ay

veranderlichen complexen Grosse. PhD thesis, Gottingen, 1851. Werke p. 3-34, transcribed by D. R. Wilkins, April 2000.



7 The Riemann Mapping Theorem
• Riemann inferred the existence of a function u(x,y) from the fact that it would be the solution to a

well-defined problem in the calculus of variations.
• The calculus of variations thus became a guarantor for the existence of a function needed for the

Riemann mapping theorem.*
• But do all problems in the calculus of variations have a solution? Weierstrass provided this example:

1 ( 01.02

min f x  dx, u(-1) a, u(1) b
axA i

• The integrand is strictly positive. To make the function small, u(x) can only have a large derivative near
x=0. One can make the function arbitrarily small, but the minimum of zero can be achieved only for a
step function, which is not differentiable.

• Weierstrass said [1869],"

"Dirichlet's reasoning apparently leads to an incorrect result in this case."

• Undaunted, Riemann said,**
ti... my existence theorems nevertheless hold."

• Helmholtz interjected,"

"For us physicists the Dirichlet principle remains a proof."

* Hans Niels Jahnke, A History of Analysis, (History of Mathematics, V. 24), American Mathematical Society, p. 379, 2003.
** Felix Klein. Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert. Berlin, 1926. Reprinted New York 1950 and 1967.



8 Dirichlet Principle or Bust?
• Weierstrass had a very bright former Ph.D. student, Hermann Schwarz (graduated 1864).
• Weierstrass suggested Schwarz investigate other means to show existence of solutions to

the Laplace equation on general domains.
• For special domains, the answer had been known for quite some time:

• Fourier (1807) for rectangular domains (using Fourier series).
• Poisson (1815) had found the solution formula for circular domains.

• The existence of solutions of Laplace's equation on arbitrary domains appeared hopeless!
Hermann

• In response, Schwarz invents the first domain decomposition method! [1870] Schwarz

• His paper begins,*

Die unter dem Narnen Dirichlet'sches Princip
bekannte Sehlussweise, ivelche in - gewissern Sinne
als das Fundament des von Rieman!' entwickelten
Zweiges der Theorie der analytischen Fanktionert an-
gesehen werden muss, unterliegt, wie jetzt wohl all-
gemein zugestanden wird, hinsichtlich der Strenge
sehr begriindeten Einwendungen, deren vollstandige
Entfernung, soviel idi weiss, den Anstrengungen der
Mathernatiker bisher nicht gelungen ist.

rThe method of conclusion, which became known
under the name Dirichlet Principle, and which
in a certain sense has to be considered to be the
foundation of the theory of analytic functions
developed by Riemann, is subject to, like it is
generally admitted now, very well justified
objections, whose complete removal has eluded all
efforts of mathematicians to the best of my
nowledge.

* H. A. Schwarz. Uber einen Grenzubergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich,
15:272-286, Mai 1870.



9 Alternating Schwarz
• Since solutions to the Laplace equation were shown to exist on rectangles and circles
(no Dirichlet Principle needed), Schwarz considered this shape:

• Schwarz proposed the following iterative process, and showed it converged.

1. Let ur = 0, uT) = O.
2. For i=1,2,...

V2u(i) = 0 on Q1 1
(i)Solve Lii = g on F1

u!,i) = ur on F4

Solve

024 = 0 on fl2
"(i)
....2 = g on F2

• Since the process converges, the converged
value must be the solution of Laplace's
equation on Q.

• Adding other circles or rectangles Schwarz then
proved recursively the existence of solution for
more and more complicated domains.

• This closed the gap in Riemann's proof.

uT = u!,i) on F3



10 1 Alternating Schwarz
• Schwartz thought about this process very mechanically.

Schwarz's original drawing
from his 1870 paper

ig. 103. 3tueigicfclige Datptiuftpunipe

Schwarz's physical interpretation of the method
using a two level vacuum pump



11 Alternating Schwarz
Other significant contributions:

• Sobolev1 gave a variational convergence proof for the case of elasticity (1936).

• This became a practical computational method with the advent of two-level additive Schwartz5 (1987).

• P. L. Lions2,3,4 has a series of publications that greatly expanded the theory (1988-89).

1 S. L. Sobolev. L'Algorithme de Schwarz dans la Th'eorie de l'Elasticit'e. Comptes Rendus (Doklady) de l'Acad'emie des Sciences de l'URSS,
IV((XIII) 6):243-246, 1936.
2 Pierre-Louis Lions. On the Schwarz alternating method. I. In Roland Glowinski, Gene H. Golub, Gerard A. Meurant, and Jacques Periaux,
editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 1-42, Philadelphia,
PA, 1988. SIAM.
3 Pierre-Louis Lions. On the Schwarz alternating method II: Stochastic interpretation and orders properties. In Tony Chan, Roland Glowinski,
Jacques Periaux, and Olof Widlund, editors, Domain Decomposition Methods, pages 47-70, Philadelphia, PA, 1989. SIAM.
4 Pierre-Louis Lions. On the Schwarz alternating method III: A variant for nonoverlapping subdomains. In Tony F. Chan, Roland Glowinski,
Jacques Periaux, and Olof Widlund, editors, Third International Symposium on Domain Decomposition Methods for Partial Differential
Equations, held in Houston, Texas, March 20-22, 1989, pages 202-223, Philadelphia, PA, 1990. SIAM.
5 Maksymilian Dryja and Olof B. Widlund. An additive variant of the Schwarz alternating method for the case of many subregions. Technical
Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, 1987.
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13 I Alternating Schwarz: Convergence Proof
• Theoreml: Alternating Schwarz converges to the

solution of the global problem,

V2u = 0 on 01 u 02
U = g on fi u F2

Let u denote the solution to the global problem. Then,
there exist C1, C2 C (0,1) such that for all i 0

• Ilulni —ur1) 11 C(1)C(1) I1 1-1 — uM 11
L"(1/1) 129(1'4)

• M uln2 — ur1)11 cii+1)q) llu — uM 11
L"(1/2) Lw(r3)

• C11 C2 depend on size of overlap and can be very close
to one if overlap small.

1. Let ur = 0, uT) = O.
2. For i=1,2,... 

V2u(i) = 0 on Q1 1

Solve u(ii) = g on F1

u!,i) = u(2") on F4

V2uT = 0 on Q2

Solve uT = g on F2

UT = Liii) on F3

1 A. Quarteroni and P.M.A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999, p. 27.



14 Sidebar: Condition Number
We denote the condition number of A as K(A): = HAM IIA-1 M.

We can demonstrate its usefulness via perturbation analysis. Let Au=f and consider the perturbed system:
• (A + EE)x(E) = b + Ee

Let 6(E) = x(E) — x. Then,
• (A + EE)6(E) = b + Ee — (b — EE)
• (A + EE)6(E) = E(e — Ex)
• 6(0 = E(A + EE)-1 (e — Ex)

We observe that the function x(E) is differentiable at 8=0:
• xf w = lim x0+0-x(o)

) = A-1 (e — Ex)E c) E 

Perturbing the pair (A,b) by the small amount (8E,8e) will cause the solution to change by EX' (0). Thus,

• Ilx(E) — xll = EllA-1 (e — Ex)II
• Ilx(E) — xll ElIA-111(11ell + IIEIIIIx11) + o(E2)

Further simplification and use of the relationship llbll llAll llxll gives the relative variation in the solution to
the relative sizes of the perturbation

11x(E)-x11 •   EMA-11111A11 M + —
11E11) + 0(E2)

11x11 llbll IIAII)



15 Sidebar: Condition Number
What does this mean physically?
• For Ill-conditioned systems, small perturbation in input can result in a

large change in solution

What does this mean for linear solvers?

• Condition number dictates accuracy

• Using relationships Ax=b, e=A-1 r, can show that —Ile II < IIAII I"11xII 11bII
• Small relative residual does not imply small relative error!

• Condition number dictates convergence rate
k

(Vic(A)-1)
Ile(°)11A Vic(A)+1 A

io 8

Ice

Cantilevered
beam

50 100 150
Iterations

200 250

Convergence curves for
optimal Krylov methods



16 Sidebar: Structure of a Simple Iterative Method
Let Au = f, and let u(k) denote an approximate solution at iteration k.
Let e(k) = u - u(k) and r(k) = f - Au(k> denote the error and residual at iteration k, respectively.

Suppose A = M - N, where M is invertable. Then,
• Au = f
• (M-N)u = f
• Mu = Nu + f
• u = M-1 Nu + M-1f

Let this define an iteration:
• u(k-Fi) = (AA-1N)u(k) + AA-1f

This iteration will converge if and only if the spectral radius of the iteration matrix M-1 N is less than one.

We can rewrite this as
• U(k+1) = (1-M-1/6)U(k) + AA-1f

= U(k) - AA-1AU(k) + AA-1 f

= U(k) + AA-1 (f-AU(k))

= U(k) + AA-1 1-00

Form of Richardson iteration:
• U(k+1) = U (k) + TBr(k)



I Sidebar: Structure of a Simple Iterative Method
Simple iteration:
. u(k+1) = (M-1N)u(k) + M-1f

Thm: Convergence iff a(1\4-1N) < 1. Proof Sketch:
Let e(k) = u(k) - u. Then,
• U(k+1) - U = (M-1N)UN + M-1f - u

• e(k+1) = (M-1N)UN + AVAU - U
. e(k+1) = (M-1N)u(k) + M-1(M-N)u - u
• e(k+l) = (M-1N)UN + (I-M-1 N)u - u
• e(k+l) = (M-1N)UN - (M-1 N)u
• e(k+l) = (M-1 N)e(k)
• e(k+l) = (M-1N)k em
Let 1\4-1N = VAV-1, where a(1\4-1N) = lAll > R21 ... 141.
. e(k+1) = (M -1N)k e(o) = VAkV-le(0) = Er lviAlciii, where n = V-1€(°)
• e(k+1) = \TIAN, + En 2 viAlicni

• e(k+1) = k 
fxiNk

A1 (v1111 + Er_2vi —) iiixi
Thus, for k >> 1,
. 

Ile(k)11 
Ile(k+1)11 ;--- Al = a(1\4-1N)

)

Then,



18 Alternating Schwarz is a Simple Iteration
• Consider the two-subdomain problem

Qi C-22]
• Let the global problem be Au=f.
• Let R1, i=1,2 be a rectangular restriction matrix that returns unknowns defined in Q.

• We can write alternating Schwarz as
• u(k+1/2) = u(k) + R1T(R1 A R1T)-1 R1 r(k)
. u(k+1) = u(k+1/2) + ( R2T/R2 A R2T)-1 R2 r(k)

• Let 131 = R1T(R1 A RiT)-1 Ri. We can re-write Alternating Schwarz as
• u(k+1) = u(k) + (B1 + B2 + B2AB1) r(k)

• This takes the form of a simple iteration. The B. are orthogonal projectors.
• Defining P1=B1A, P2=B2A, and noting that e (k) =A-1 r(k), we can rewrite the iteration as

• e(k+i) = [l _ (p1 
+ P2 

_ P2P1)] e(k)

• As before, this iteration will converge iff the spectral radius of the iteration matrix is less than one.



19 Alternating Schwarz is a Simple Iteration
Alternating Schwarz takes the form
• eck+l) = [l - (P1 + P2 - P2P1 11 e(k)

Note that
• Pi = Pi2 (i.e., P is a projector)
If A is SPD, then
• (Pi x, y)A = xT PiT A y = xT A Bi A y = xT A Pi y = (x, Pi y)A
• i.e., Pi is an orthogonal projector in the A-norm onto Vi = span{RiT}

This suggests (geometrically) that each projected error is smaller than the last.

Key observation: Alternating Schwarz proceeds by:
1. Restriction: Ri
2. Solution of a (smaller) linear system (Ri A RiT) ui = fi
3. Prolongation: RiT

This process is fundamental to all domain decomposition and multigrid/multilevel algorithms.



20 Alternating Schwarz is a Simple Iteration
Convergence behavior of Schwarz

0(6)

A 
0(H)

20(h)

• K(A) C/h2

• K(P-1A) < u(62-2)H 1

This means:2
• The number of iterations grows as H decreases
• If 6 - H and H is fixed, the number of iterations is bounded independent of h. This means the behavior of

the discrete problem is like the continuous problem: If the number of subdomains is fixed, the number of
Schwarz iterations does not vary with h (assuming exact subdomain solves).

• Convergence is poor for small 6.
1A. Quarteroni and P.M.A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999, p. 95.
2 B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996, p. 24.
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22 Heterogeneous Domain Decomposition
• Domain decomposition methods all assume the existence of some global problem to be solved, and show

how to break it into subdomains.

• Each subdomain knows about the other subdomains only through its boundary.

• This presents the opportunity to substitute out one subdomain with a completely different model, and
provides an algorithmic framework for mathematically consistent multi-model coupling.

Global Model

I*

I*

I*

L2(u2)=f2

Homogeneous
Domain-Decomposed

Model

=> L1(u1)=f1 \

Heterogeneous
Domain-Decomposed

Model



23

At

Iterative Minimization
• Write separate energy functionals for atomistic and continuum domains

• Iterate:

FE {1 . Fix location of (most) pad nodes;
Minimize energy of continuum region

2. Fix location of (most) pad atoms;
Minimize energy of atomistic region

• This is just alternating Schwarz!

000
000
000
000
000
000

Atomistic
Region

000 ,--00,-0.241e Continuum
0 0

0 0 )Wid

00 C111 ....- 1
DOO 

v !legion

it1417MIMP111
Pad

41M\WIIIIM

14i1
00
M1—:M=

000000000000000000000
000000000000000000000C
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000C
000000000000000000000
000000000000000000000C
000000000000000000000
000000000000000000000C
000000000000000000000
000000000000000000000C
000000000000000000000
000000000000000000000C
000000000000000000000
000000000000000000000C
000000000000000000000

Cartoon of Coupled

Atomistic/Continuum Model*

• Important difference: We do not assume existence of global equation!
• What does this mean for convergence? What does this mean for the error of the coupled model?

* W. A. Curtin and R. E. Miller, Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng., 11:R33-R68, 2003.



24 Classical Schwarz vs. Atomistic/Continuum Schwarz
• Exploit domain decomposition theory: Overlapping Subdomain Methods (Schwarz-type)

• Cut problem into physical subdomains
• Solves only on each subdomain
• Information transfer through boundary conditions

• Classical domain decomposition theory tells us:
• Rate of convergence increases with overlap
• Solution independent of overlap

• Still true for AtC Schwarz?

• Can I ...
• Prove convergence in AtC Schwarz case?
• Bound rate of convergence as function of overlap?
• Determine how solution depends on overlap?



25 Atomistic/Continuum Schwarz
• Assume regular (Bravais-like) atomic lattice (1D, 2D, 3D)
• Assume At and FE couple same material

••••••••••••••••••••••••••••••••••••••••••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••000000000000000000••••••••••••••••••••••••••••••••••••••••



26 Atomistic/Continuum Schwarz
• Assume atomic lattice extends into FE domain (this defines global atomistic model)

• • • • • • • • • •• • • • • • • • • •• • • • • • • • • •
••0 •0 •0 •0 •0 •0 •0 •0 •0 •

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••0 00 00 00 00 00 00 00 00 0

••• 0• 0• 0• 0• 0• 0• 0• 0• 0••• •• •• •• •• •• •• •• •• •• • • • • • • • • •

0• •• •• •• •• •• •0• •• •• •• •• •• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •00 00 00 00 00 0• •0• •• •• •• •• •• •0• •• •• •• •• •• •



27 Atomistic/Continuum Schwarz
• Assume atomic lattice extends into FE domain (this defines global atomistic model)
• Use lattice to define FE mesh (this defines global finite element model)

• •• 00 00 00 00 Or* •• 00 •• 00 00 •• 010 010 •• •
• 00 •• 00 00 00 00 •• •• 00 010 •• 00 010 00 •• •
• 0.044.0.•••••••••••••••••••••••••••••..a.sa.0.0...0.0.1.0.0.0 
tlietlopetflAppeOADVAAW.0 • 40.0,,At,40.*Ippetipe• •
t &AV IVA OP•OA IP& apP~Pet,41 0&401 PAM* •

.PpPe0j VA Da•'eV OP, Wp.PpP~Pet,41•40104W1.0 •

0, 4 10 4 IV 40j VA AOp. P~PP40.01DA le• •

t. IV 0410j AMA rj040~.P&PpPp40.01,4010 t

• •••••••••••••••••••••••••••••••••••••••••••.-agbrabdiAlrmibbdi46.11.1.diAarlawdiger•hkdiAlmdlikdidg•mab.diAgrab.MiAgra.MiAgra.diAhmdn.didirmilh.diAhriehbAhAbranAhA6.••.aa

5pffe• W&ffe• W&ffpffeUffe• W.0 W&."&ffe• We• W&ffe• •

• 40&40 1.0&410~40~4•&P&40 •

0,.PpPAePlet,Plet,Plet940,940,94tOeteaPPeitgAtOok9PetePe• •

t.Pelt9PetePlet@PIPP.0,940,94tOotOetePpaet0.0,9Pet9PA940 •

• •••••••••••••••••••••••••••••••••••••••••••• •

O 00 010 00 •• •• 00 •• 00 00 010 •• 00 01* •• 00 •



28 Atomistic/Continuum Schwarz
• Step #1: Solve atomistic problem

••••••••• 0
•••••••••••••••••••0

••0•0•0•0•0•0•0•0•0•

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••0 00 00 00 00 00 00 00 00 0

•• •0•0•0•0•0•0•0•0•0

•• ••
• ••
• ••
• ••
• ••
• ••
• ••
• •• •• ••

•
•



29 Atomistic/Continuum Schwarz
• Step #1: Solve atomistic problem

• Record new positions for all unconstrained atoms

••••••••••
••••••••••••••••••••

••0•0•0•0•0•0•0•0•0•

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••000000000000000000

••0 00 00 00 00 00 00 00 00 0

•• •0•0•0•0•0•0•0•0•0

•• ••
• ••
• ••
• ••
• ••
• ••
• ••
• •• •• ••

•
•



30 Atomistic/Continuum Schwarz
• Step #1: Solve atomistic problem

• Record new positions for all unconstrained atoms
• Assign Dirichlet boundary conditions for FE problem

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
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0
0 
0
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0
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0
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0
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0
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0
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0
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0
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0
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0
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31 Atomistic/Continuum Schwarz
• Step #2: Solve finite element problem

• Record new positions for all unconstrained finite element nodes
• Assign Dirichlet boundary conditions for atomistic problem
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34 Atomistic/Continuum Schwarz
• Step #2: Solve finite element problem

• Record new positions for all unconstrained finite element nodes
• Assign Dirichlet boundary conditions for atomistic problem
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Atomistic/Continuum Schwarz Convergence Theory
• Let 1<cuc = f (globally) and KAUA = f (globally)

• Each AS iteration is projection of error

where

PA

un+1/2 _ un

un+1 _ un+1/2

1 -1 o(KA))

o oi
KA

F. (L, _ u +1/2c c )

PA(uA-u
n
n)

Pc

1 -1 o\(lecc))

0 0)
lc



36 Atomistic/Continuum Schwarz Convergence Theory
• Let

• Can show

• Let

eAn un-u,
Fe,. n+1
A

VAV-1

uc UA - d

0 - (PA +Pc -PCPA)1enA +Pcd

i - (PA + Pc - Pc PA )
• Assume 0 < a(A) < 1

• Then

Convergence
rate

enA+1

(
a0
...,,A

depends on
overlap

0-(A)
1 - 0-(A)

Pcd

depends on
ilodels

-,r-7.
K(V)

+   Pr d
i ,1-6(A))



37 Atomistic/Continuum Schwarz Convergence Theory
• What about pccill? Consider following decomposition:

Q(A) Q(C)

 ..-1.-

i

• • • • • • • • • • • • • •

Qi f/ 3 Q2

4— At .  Overlap  . 4— Fe

• Let d = [d1 d2 d3]T Then, 11130111 - NA, Ild3 M.

• Small error if 11d211, Ild3 11 « 1 .
• Occurs if FE solution well approximates atomistic solution in Q2, Q3 (pure continuum domain + overlap

domain).

• If d2 = d3 = 0, can recover (global) atomistic solution!



38 I A Simple I D Model*
• Atomic model: Chain of 101 Atoms

=a l 1 fr 2 l b, 2 l iil, 2 l iil,
s- i = [ n 1 ( Lii - Lii ) + rti (Lii+i - Ili ) + rt 2 ( Lii - Lii _2 ) + rt 2 ( Lii + 2 - Lii 

)22 2 -1 2 2 2

1
= —k (u. - u_ .,)22 c i I-.

4— a —.

k. = k, f 4k2

4— a —.

W. A. Curtin and R. E. Miller, Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng., 11:R33-R68, 2003.



39 A Simple I D Model
• Atomic model: Chain of 101 Atoms

Q(A) Q(C)

 _. 

-0-- • • • • • T • • • • • • •
1 I I

left end point point
fixed force force

• 0 < a(A) < 1 (proof omitted)

• Vary overlap; Observe effect upon converged solution



40 A Simple I D Model
• Left atom fixed; Force applied to right atom and atom 51
• # Iterations decreases with increasing overlap

• Expected from DD theory
• Converge to atomistic solution

6 G(A) # Iterations

1 0.9551 387

2 0.8840 145

3 0.8173 89

4 0.7555 65

0.66

0.54

0.52

0.46

0

0.42 

Atomistic, 6 = 4 
46 47 48 49 50 51 52

At o rri/N ci de
53

—1E1— 8=1

—13— 5-2
—1E1— 8_3

—13— 5-4
Atomistic

0  FEAt

64 55 56



41 Domain Decomposition

Historical and Mathematical Origins

Convergence Analysis

Multiscale Modeling: Atomistic-to-Continuum Coupling

Multi-Model Coupling: Classical Elasticity and Peridynamics



42 Heterogeneous Domain Decomposition
• Domain decomposition methods all assume the existence of some global problem to be solved, and show

how to break it into subdomains.

• Each subdomain knows about the other subdomains only through its boundary.

• This presents the opportunity to substitute out one subdomain with a completely different model, and
provides an algorithmic framework for mathematically consistent multi-model coupling.

Global Model

I*

I*

I*

L2(u2)=f2

Homogeneous
Domain-Decomposed

Model

=> L1(u1)=f1 \

Heterogeneous
Domain-Decomposed

Model



43 I Local/Nonlocal Coupling*
• Classical linear elasticity is a local model

• V • S(us(x)) + b(x) = 0, xeQs

uE  tr((aus) T E  (aus) ((ZIT]
• $(us(x)) =

2(1+u)(1-2u) a3c) Cauj )1 + (1+2u) ax

• Peridynamics is a nonlocal model

• H f(up(x') — up(x),x' — x)c/Vx, + b(x) = O, )(ES;

IIPMEEMEMME =MENEM
l OPIUM.. MEMMEINEEMhdaiprii-1--1•Im-1---4...
ENNI:  •   IMP%
MEM gli 11:11111111111111111 Pi° aMIE
MEW" illimm" mmuni &' MEM
ERE M IIII mo Dim.
Mu=MI mg=Ems um KiiiiiiliEMsm... ....vaimmmMENE OEM INE,

MEM IP 1111 iiimmar 
■
NM am..am 1 ,..

NMI hl" IIIIIIIIII IMMO: 4 imm
Nomipalemulintuall.k.wmNow. .. .. . 4. . 4.  :. -.  : :7.L.:::1•67.
smi...,_,_,._,__.,._ ammo
osommENEEEEMitoolENEENNENNUmmommui

np+s

r

x

• It is useful to be able to couple these models using only black-box
codes to leverage each model where it is of most value.

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



4, I Local/Nonlocal Coupling*
• Solve the coupled system using Alternating Schwarz

• Boundary Conditions for Linear Elastic Domain
• Dirichlet: t s'(x) = 1111-1(x), V xel"1

• Neumann: S(t s'(x)) • n, = S (nil-1(x)) • ns, V xel"1

• Robin: S(t s'(x)) • n, + Ruis'(x) = S (u1,1-1(x)) • n, +Ru11-1 (x), V xel"1

• Boundary Conditions for Peridynamic Domain
• Dirichlet: tq(x) = t s'(x), V xeF2
• Dirichlet w/ Aitken Acceleration: 1111(x) = Tnt1111-1(X) + (1 — Tn)U1s1(X), V xeF2

(Qn-l_Qn).nn
Tn = Tn-1(Tn-1 — 1)  n-1 •

) .‘ 1 where Qn = U1s1(X) — U (X)
P

11Q11-1-Qn 112

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



45 Local/Nonlocal Coupling*
• We can seek an optimal R (Robin coefficient) analytically for a simple problem

Qs 
Yi

• Simplified Peridynamic Model Qp+s1
f ,(11f-Frill—Ilf11 f-Fri  ) dv C2 p

. jil, ' 11f11 U.-Frill) ' v x' 
0, )(ES;

• Simplified Linear Elastic Model (v = 1 /3)
3E a2u 3E a2u. s +  

2 ax2 8 ay2 

s = 01 xEcIs

• Boundary Conditions
3E aun 3E aun-1

• Robin: — + Ri s' = P  
+ Ru -1/ V x=L12 ax 2 ax P 

• Dirichlet + Aitken: ull(x) = Tnuil-l(x) + (1 — tn)t s'(x), V xeL2

V

Qs

1 Qp+s

-4-

2L. .- -

21-2

1

.

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



46 Local/Nonlocal Coupling*
• Convergence analysis based on Fourier

• us (x, y) = Ey(1.15)y WOOS (T) up (x, y) = Ey(11p) (x)cos CrIE37)

• Define reduction factor in frequency space

• an P )y 11 P—( )yl

PY —n-1 —
• (up ) —(up)Y I

• The reduction factor can be determined analytically as a function of R,

joci(R Tn) =

yryx

e-Tu — e 21-

p— 1 )y
(7L-nr =c)
e — e 2L

Tn)

3EmP 
4/, 'V 21'

3Emy
4/,
  e 21-

+ e 2L

—ryL
+ 4? 21,

R (
Iryl, 1 17,1,

e 2.L — e 2L

Try', 

R (e 2L e 21,

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



I Local/Nonlocal Coupling*
• Test problem: Plate under uniaxial tension
• Manufactured solution satisfies both local and nonlocal

[0.8(1—u)(1+u) + 1)1

• Us (X, 37) = E0.8u(1+u)
+ 1)E

• Convergence with optimal R, tn:
• Optimal Robin-Aitken (16 steps)
• Optimal Robin-Dirichlet (35 steps)
• Neumann-Aitken (39 steps)
• Dirichlet-Aitken (94 steps)
• Dirichlet-Dirichlet (161 steps)
• Neumann-Dirichlet (divergent).

1

FE

Overlapping (PD+FE)

PD

2m

a 2m

—NeurnEmn•Dirichlut
Flobln-DrIchiel

— thlrIchlet-Anken
Neumann-Allken
Rõlnin-Ailkah

60 90
Iteration number

120 lso

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



48 Local/Nonlocal Coupling*
• Test problem: Plate under uniaxial tension

1.5

r,
u_

0.5

-o
a)
CC 0

Neumann

•

.. ... : !
111111111111111 

........... . . . .. ..*
. It ......... 

:
. . . 

.... ....4.....  
.7# . •4'... • 

.....................
.• 

'; ..... 0 
................

•

—7=1
—7=2
- =5

— 7=10

..*

0.5 1 2 4 8 16 32
R/E

Reduction factor for various
frequencies for 1D analysis

Dirichlet

n 0 3

412 10 2

"6

E
10 1

— Neumann 0.5 1 2 4 8 16 32 100
R/E

# Iterations for convergence
for 2D plate under uniaxial

tension

Dirichlet

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



49

cy

Local/Nonlocal Coupling*
• Example with fracture in peridynamic domain

FE PD  

>
20 mm

Overlapping (PD+FE)

Region where damage is allowed

2m
Plate with hole under

uniaxial tension

>

6 2m

displacement X
1.500e-04

17.5e-5

-1.500e-D4

displacement X
1.500e-04

17.5e-5

-1.500e-D4

displacement X
1.500e-04

17.5e-5

-1.500e-134

displacement X
1.500e-04

17.5e-5

I-7.5e-5

-1.500e-04

displacement X
1.500e-04

117.5e-5

17.5e-5

1 500e 04

displacement
1.000e-04

15e-5

0

I-5e-5

-1.000e-04

displacement Y
1.000e-04

15e-5

-1.000e-04

displacement V
1 000e-04

115e-5

I-5e-5

-1.000e-04

displacement V
1.000e-04

15e-5

I-5e-5

-1.000e-04

•

•

Damage
5.455e-01

10.40912
i0.27275

10.136370.1:00e+00

Damage
5.45,o 01

10.40912
gl.27275

10.136370.000e4-00

Damage
5.455e-01

10.40912
:0.27275

10.136370.000e-t00

Damage
.5.455e-01

110.40912

:0.27275

10.136370.000e+00

displacement Y Damage

.1.000e-04 g5.455e-01

15e-5 It0.40912

0 co 27275

I-5e-5 10.13637

-1.000e-04 F0.000et-00

x-displacement y-displacement damage

•

* Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



50 Conclusions
Today, we discussed:

• Historical and mathematical origins of Alternating
Schwarz

• Some convergence analysis

• Applications to multiscale and multi-model coupling:
• Atomistic-to-continuum
• Local/Nonlocal coupling
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