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; | Domain Decomposition

Domain Decomposition generally means the splitting of a partial differential equation (PDE) into coupled
problems on smaller domains forming a partition of the original domain, such that the solution to the
partitioned problem is the same as the original unpartitioned problem.

This is commonly driven by the desire to utilize parallel computers.

Early drivers for domain decomposition methods arose from an
inability to fit large computational models into memory.

Massively parallel computers make previously intractable problems
possible, but come with the cost of developing algorithmic solution

methods that parallelize well. ) )
Summit at ORNL is currently world’s

fastest computer at 200 petaflops
(200,000 trillion floating point ops
per second)

We’re being pressed to find and exploit more parallelism in our
algorithms. Need million- and billion-way parallelism.

One would reasonably expect our domain decomposition story to begin with the advent of parallel

computing. However, our story begins in the mid-1800s. The following historical exposition is taken from [1].

[1] Gander M, Wanner G (2013) The origins of the alternating Schwarz method. In: Erhel J, Gander M, Halpern L, Pichot G, Sassi T, Widlund O
(eds) Domain decomposition methods in science and engineering XXI, Lecture Notes in Computational Science and Engineering. Springer,
Berlin, pp 415-422



The Riemann Mapping Theorem

» Bernhard Riemann studied at the University of Berlin from 1847-1849.
* During his time of study, Carl Gustav Jacob Jacobi, Peter Gustav Lejeune Dirichlet,

Jakob Steiner, and Gotthold Eisenstein taught there. Riemann’s advisor was C.F. Gauss. “
» Gauss did not praise other mathematicians easily, but wrote this about Riemann:*

Bernhard Riemann
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ﬁhe manuscript submitted by Riemann is a testament of the\
thorough and deep studies by the author in the area to which
the treated subject belongs; of an aspiring and truly
mathematical research spirit, and of a glorious, productive
self-activity. The presentation is comprehensive and concise,
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* R. Remmert. Funktionentheorie. Springer, 1991.

Knot be before next week. /




; | The Riemann Mapping Theorem

« Riemann’s thesis contained the foundation of analytic function theory.
» This included the Riemann Mapping Theorem:

“Two simply connected surfaces can always be mapped one to the other, such that
each point on the former moves continuously with the point on the latter...”

« Riemann gave a constructive proof:

* We need to find an analytic function f which maps Q to the unit disk and one point z, € Q
into 0. We thus set f(z) := (z-z;) e2®, where g=u+iv is an analytic function to be
determined, in order to ensure that z; is the only point mapped into zero.

* In order to arrive from the boundary 0Q) to the boundary of the disk with the mapping, we
must have for all z € 9Q that [f(z)|=1, which implies that

1=1f(2)] = |(z-z5)e"V| = |(z-Zp)|e¥ = u(z) = -log|z-z,|, Vz€E aQ

« Since g is analytic, the real part u of g satisfies Laplace’s equation V2u = 0 on Q, with the
boundary values given above.

* |t thus suffices to solve for u, construct v using the Cauchy-Riemann equations,

ou ov ou_ ov
ox oy’ oy  ox
and then the construction of f is complete.




6 | The Riemann Mapping Theorem

But there’s a problem: Riemann assumed that a solution to Laplace’s equation on an arbitrary domain
with given boundary conditions exists. Was that really true?
When confronted with this question, Riemann said *

“To this end, one can often invoke a principle for finding a function that solves Laplace’s
equation, which Dirichlet has been using in his lectures over the past few years.”

Riemann called this “Dirichlet’s Principle”.
Suppose we want to minimize

Efu(x, y)] = [[ f(x,y,

where u(x,y) takes on a specified value on 9Q). The solution must satisfy the Euler-Lagrange equation

of o0 of o of _0
ou o0xou, 0y ou,

As a specific example, suppose

(5[5

2 2
* Then, the Euler-Lagrange equation reduces to Laplace’s equation, Vzu(x,y) = o’u ou

+
2 2
* Berhard Riemann. Grundlagen fur eine allgemeine Theorie der Functionen einer OX 0
veranderlichen complexen Grosse. PhD thesis, Gottingen, 1851. Werke p. 3-34, transcribed by D. R. Wilkins, April 2000.

a—u,a—u) dxdy
OX 0y

=0



; I The Riemann Mapping Theorem

» Riemann inferred the existence of a function u(x,y) from the fact that it would be the solution to a
well-defined problem in the calculus of variations.

» The calculus of variations thus became a guarantor for the existence of a function needed for the
Riemann mapping theorem.*

» But do all problems in the calculus of variations have a solution? Weierstrass provided this example:

OX

* The integrand is strictly positive. To make the function small, u(x) can only have a large derivative near
x=0. One can make the function arbitrarily small, but the minimum of zero can be achieved only for a
step function, which is not differentiable.

» Weierstrass said [1869],**

minj(xa—”) dx, u(-1)=a, u(1)=b

[ “Dirichlet’s reasoning apparently leads to an incorrect result in this case.” J

 Undaunted, Riemann said,**

[ “... my existence theorems nevertheless hold.” J

« Helmholtz interjected,**

[ “For us physicists the Dirichlet principle remains a proof.”]

* Hans Niels Jahnke, A History of Analysis, (History of Mathematics, V. 24), American Mathematical Society, p. 379, 2003.
** Felix Klein. Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert. Berlin, 1926. Reprinted New York 1950 and 1967.



5 | Dirichlet Principle or Bust!?

Weierstrass had a very bright former Ph.D. student, Hermann Schwarz (graduated 1864).

Weierstrass suggested Schwarz investigate other means to show existence of solutions to

the Laplace equation on general domains.

For special domains, the answer had been known for quite some time:

» Fourier (1807) for rectangular domains (using Fourier series).

» Poisson (1815) had found the solution formula for circular domains.

The existence of solutions of Laplace’s equation on arbitrary domains appeared hopeless!

Hermann
Schwarz

In response, Schwarz invents the first domain decomposition method! [1870]
His paper begins,*

“Dic unter dem Namen Dirichletsches Prineyp ﬂ' he method of conclusion, which became known

bekannte Schlussweise, welche in ‘gewissem Sinne under the name Dirichlet Principle, and which
als das Fundament des von Riemann entwickelten in a certain sense has to be considered to be the
Ziweiges der Theorie der analylischen Funktionen an- foundation of the theory of analytic functions
gesehen werden muss, unterliegt, wie jetzt wohl all- developed by Riemann, is subject to, like it is

gemein zugestanden wird, hinsichtlich ~der Strenge : 2
sehr begrubndeten Einwenéungen, deren vollstindige generally admitted now, very well justified

Entfernung, soviel ich weiss, den Anstrengunwen der objections, whose complete removal has eluded all
Mathemallker bisher nicht gelungen ist. .~ efforts of mathematicians to the best of my

u(nowledge.

* H. A. Schwarz. Uber einen Grenzubergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich,
15:272-286, Mai 1870.



s | Alternating Schwarz

 Since solutions to the Laplace equation were shown to exist on rectangles and circles
(no Dirichlet Principle needed), Schwarz considered this shape:

« Schwarz proposed the following iterative process, and showed it converged.

2. Fori=1,2,...
Solve
Solve

9

0) _ 0) _
1. Letu;” =0,u;,” =0.

Vi’ =0 on Q,
u’=g onT,

u =ul"onr,

Viul) =0 on Q,
u) =g onT,

u) =ul’ onT,

 Since the process converges, the converged
value must be the solution of Laplace’s
equation on Q.

» Adding other circles or rectangles Schwarz then
proved recursively the existence of solution for
more and more complicated domains.

» This closed the gap in Riemann’s proof.



10 | Alternating Schwarz

» Schwartz thought about this process very mechanically.

SR . - : : Tig. 103. Bweifticielige i)nl)ﬁluftpumne
Schwarz s.orlgmal drawing Schwarz’s physical interpretation of the method
from his 1870 paper using a two level vacuum pump



1 | Alternating Schwarz

Other significant contributions:
« Sobolev! gave a variational convergence proof for the case of elasticity (1936).
« This became a practical computational method with the advent of two-level additive Schwartz> (1987).

« P.L. Lions%34 has a series of publications that greatly expanded the theory (1988-89).

1S. L. Sobolev. L’Algorithme de Schwarz dans la Th eorie de I’Elasticit"e. Comptes Rendus (Doklady) de I’Acad "emie des Sciences de I’URSS,
IV((XIIl) 6):243-246, 1936.

2 Pierre-Louis Lions. On the Schwarz alternating method. I. In Roland Glowinski, Gene H. Golub, Gerard A. Meurant, and Jacques Periaux,
editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 1-42, Philadelphia,

PA, 1988. SIAM.

3 Pierre-Louis Lions. On the Schwarz alternating method ll: Stochastic interpretation and orders properties. In Tony Chan, Roland Glowinski,
Jacques Periaux, and Olof Widlund, editors, Domain Decomposition Methods, pages 47-70, Philadelphia, PA, 1989. SIAM.

4 Pierre-Louis Lions. On the Schwarz alternating method lll: A variant for nonoverlapping subdomains. In Tony F. Chan, Roland Glowinski,
Jacques Periaux, and Olof Widlund, editors, Third International Symposium on Domain Decomposition Methods for Partial Differential
Equations, held in Houston, Texas, March 20-22, 1989, pages 202-223, Philadelphia, PA, 1990. SIAM.

> Maksymilian Dryja and Olof B. Widlund. An additive variant of the Schwarz alternating method for the case of many subregions. Technical
Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, 1987.
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i3 | Alternating Schwarz: Convergence Proof

« Theorem': Alternating Schwarz converges to the
solution of the global problem, I

Viu=0onQ,uQ,
u=g onl,ul,

Let u denote the solution to the global problem. Then, 1. Letu!” = 0,ul” = 0.
there exist C;, C, € (0,1) such that for all i >0 2. Fori=1,2,.. (o g
(i+1) i) ~ () 0 ) Viul’ =0 on Q
+ e, - <0’ fu—u)| 1 1
Yo, ~ L®Q,) L 2 T e ry) i
| L | | Solve < ul’=g onT,
o, =08 o, S GTVE =0 e
92772 oy T 2 L*(T) uy =u;’ onT,
« C,, C, depend on size of overlap and can be very close (V2u® =0 on O
2 2

to one if overlap small. _
Solve ¢ ul’!=g onT,

u) =ul’) onT,

T A. Quarteroni and P.M.A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999, p. 27.



Sidebar: Condition Number
We denote the condition number of A as k(A): = ||A]|[|A™Y]].

We can demonstrate its usefulness via perturbation analysis. Let Au=f and consider the perturbed system:
c (A+cE)x(e) =b+ce

Let §(¢) = x(¢) — x. Then,
* (A+€E)6(e) =b+¢ee— (b—c¢€E)
* (A+€E)6(e) = g(e — Ex)
e §(e) =e(A+€E)"! (e — Ex)

We observe that the function x(g) is differentiable at £=0:

. _ x(0+€)—x(0) _ A-1 _
x'(0) = 1:_)0 - A~ (e — Ex) |
Perturbing the pair (A,b) by the small amount (¢E,ce) will cause the solution to change by ex'(0). Thus,
* |Ix(e) — x|l = €]|A7" (e — Ex)||
* |Ix(e) — x|l < ellA~HI{lell + EIXID + O0(g*) I
Further simplification and use of the relationship ||b]| < [|A]|||x]| gives the relative variation in the solution to
the relative sizes of the perturbation

. IIX(S)—XII —1 llell , IEIl )
Il B4 I|||AI|(IbII IIAII)+0( )



Sidebar: Condition Number

What does this mean physically?
» For Ill-conditioned systems, small perturbation in input can result in a
large change in solution

Free end \

Cantilevered
beam

What does this mean for linear solvers?

+ Condition number dictates accuracy TN

« Using relationships Ax=b, e=A-r, can show that :: :: < [|A]|||A7L] Illltl;llll B

« Small relative residual does not imply small relative error!

......

» Convergence rate of conjugate gradients: [[e®]| <2 (&) 1] | Convergence curves for

optimal Krylov methods

« Condition number dictates convergence rate * |
K(A)+1 |



Sidebar: Structure of a Simple Iterative Method

Let Au = f, and let u¥) denote an approximate solution at iteration k.
Let e®) = u - u® and r ® = f - Au®) denote the error and residual at iteration k, respectively.

Suppose A = M - N, where M is invertable. Then,

e Au=f
e (M-N)u="f
e Mu=Nu+f

e U=MTNu+M1f
Let this define an iteration:
o uk+D) = (M IN)UK + M1f

This iteration will converge if and only if the spectral radius of the iteration matrix M-'N is less than one.

We can rewrite this as

. uk+1)_(| M1A) + M1f
= M1Auk>+M1f
—uk)+M1(fAuk))
= uk + M1rk)

Form of Richardson iteration:
o yk+tt) =y k) + tBrk



Sidebar: Structure of a Simple Iterative Method

Simple iteration:
o uk+D) = (M IN)UK + M1f

Thm: Convergence iff c(M~1N) < 1. Proof Sketch:
Let e®) = u® - u. Then,
1) - u = (MTN)u® + Mf - u

u(
o ek = (MTIN)u®k + M1Au - u
o el = (M IN)u® + MT(M-N)u - u
o el+h) = (MTNYU®M + (I-MTN)U - U
e ek = (MIN)U® - (M-TN)U
e elh) = (M: 1N)e<k>
. el = (MIN)ke
Let M~IN = VAV‘l, where c(M™IN) = |A{| > |A;| = --- = |A,|. Then,
e ekt = (MIN)K e = VAKV 10 = ¥'B  v;Aln;, wheren = V~1e®©

e ektD) =y Ak, + ¥ vidky, .

Aj
e ekt =)k (Vlnl + L2 Vi (A_l) i )
Thus, for k » 1,

le®*Dl 5 _ -1
ey~ A= oM



s | Alternating Schwarz is a Simple Iteration

» Consider the two-subdomain problem

£, Q,

» Let the global problem be Au=f.
» Let R,, i=1,2 be a rectangular restriction matrix that returns unknowns defined in Q;

« We can write alternating Schwarz as
e ukr1/2) = y® + RT(R,AR,T) 1R, r
o uks) = yk+1/2) 4 RzT(RzA RZT)-1 R, r(k)

« Let B, = RT(R,AR")""R,. We can re-write Alternating Schwarz as
o utkeh = yk+ (B, + B, + B,AB,) r®

« This takes the form of a simple iteration. The B, are orthogonal projectors.
« Defining P,=B,A, P,=B,A, and noting that e ®) =A"r(k| we can rewrite the iteration as
® e(k+1) = [I - (P1 + Pz - P2P1 )] e(k)

» As before, this iteration will converge iff the spectral radius of the iteration matrix is less than one.



s | Alternating Schwarz is a Simple Iteration

Alternating Schwarz takes the form elk
* e(k+1) = [I - (P1 + Pz - P2P1 )] e(k)
Note that |\

« P, =PZ2(i.e., Pis a projector)
If Ais SPD, then
* (Pix, ¥)a=x"PTAYy =xTAB;Ay =xTAP;y = (X, P;y),
* i.e., P, is an orthogonal projector in the A-norm onto V; = span{R."}
This suggests (geometrically) that each projected error is smaller than the last.

Key observation: Alternating Schwarz proceeds by:
1. Restriction: R,
2. Solution of a (smaller) linear system (R,ART) u; = f;
3. Prolongation: R

This process is fundamental to all domain decomposition and multigrid/multilevel algorithms.



0 | Alternating Schwarz is a Simple Iteration

Convergence behavior of Schwarz

vO(h)

A
v

e K(A) < C/h?
. «(P'A) < C/(52H2) 1

This means:?

» The number of iterations grows as H decreases

* If 6 ~ H and H is fixed, the number of iterations is bounded independent of h. This means the behavior of
the discrete problem is like the continuous problem: If the number of subdomains is fixed, the number of I
Schwarz iterations does not vary with h (assuming exact subdomain solves).

« Convergence is poor for small 8. |

T A. Quarteroni and P.M.A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999, p. 95.
2 B, Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996, p. 24.
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» | Heterogeneous Domain Decomposition

« Domain decomposition methods all assume the existence of some global problem to be solved, and show
how to break it into subdomains.

« Each subdomain knows about the other subdomains only through its boundary.

» This presents the opportunity to substitute out one subdomain with a completely different model, and
provides an algorithmic framework for mathematically consistent multi-model coupling.

Global Model Homogeneous Heterogeneous

Domain-Decomposed Domain-Decomposed
Model Model



23 | Iterative Minimization

» Write separate energy functionals for atomistic and continuum domains

XX 00 0 ol—0—%0
ooo] Atomistic [ooogsaos

oodg P 0 0 oy e,
ooo0 H 000

° Iterate- 000 Reglon b0 0 63| B0

. [ X-X-) 0 0 A\ o)

0000000000000 0000O0O0O0O0 @, OO

000000000000000000000U

FE {1. Fix location of (most) pad nodes;
Minimize energy of continuum region ©00000000000000000000( |
At 2. Fix location of (most) pad atoms; :I:I
Minimize energy of atomistic region

OOOOOOOOOOOOOOOOOOOOOO O
000000000000000000000 &= OO

Cartoon of Coupled
Atomistic/Continuum Model”

» This is just alternating Schwarz!

» Important difference: We do not assume existence of global equation!
* What does this mean for convergence? What does this mean for the error of the coupled model?

* W. A. Curtin and R. E. Miller, Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng., 11:R33-R68, 2003.



. | Classical Schwarz vs. Atomistic/Continuum Schwarz

« Exploit domain decomposition theory: Overlapping Subdomain Methods (Schwarz-type)
* Cut problem into physical subdomains
» Solves only on each subdomain
» Information transfer through boundary conditions

» Classical domain decomposition theory tells us:
» Rate of convergence increases with overlap
» Solution independent of overlap

e Still true for AtC Schwarz?

« Canl..
* Prove convergence in AtC Schwarz case?
* Bound rate of convergence as function of overlap?
» Determine how solution depends on overlap?



25 | Atomistic/Continuum Schwarz

» Assume regular (Bravais-like) atomic lattice (1D, 2D, 3D)

» Assume At and FE couple same material

00000000O0COCOOOOOOS
00000000COCOOCOOOOS
0000000000000 ee
0000000000000 0ee
0000000000000 0ee
0000000000000 0ee
0000000000000 ee
0000000000000 0ee
0000000000000 0ee
0000000 0OC0O0O00000ee
0000000000000 0ee
0000000000000 0ee
0000000000000 0ee
000000 0C0OC0O0O00000ee
0000000 0OC0O000000ee
0000000000000 0ee
0000000000000 0ee
0000000000000 0ee
000000000000 O0COCGOGKS
0000000000O0CGOGKOGOIOS




2 | Atomistic/Continuum Schwarz

» Assume atomic lattice extends into FE domain (this defines global atomistic model)

0000000000000 00O
0000000000000 00O
0000000000000 0Oee
0000000000000 0Oee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 0ee
0000000000000 0ee
0000000000000 0ee
0000000000000 0Oee
0000000000000 ee
0000000000000 06 |
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 0Oee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 0ee
0000000000000 06O06O
0000000000000 06O06O




27 | Atomistic/Continuum Schwarz

» Assume atomic lattice extends into FE domain (this defines global atomistic model)

» Use lattice to define FE mesh (this defines global finite element model)




28 | Atomistic/Continuum Schwarz

Solve atomistic problem

Step #1

000000000CCQOCOOOOS
000000000CCOCOOOOYS
0000000000000 ee
0000000000000 ee
0000000000000 e e
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 e e
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 e e
0000000000000 ee
0000000000000 ee
0000000000000 0ee
0000000000000 ee
0000000000000 ee
0000000000000 O0CKOCF°
0000000000000 O0CKOCFO




29 | Atomistic/Continuum Schwarz

» Step #1: Solve atomistic problem

» Record new positions for all unconstrained atoms

000000000CCOCOOOOS
000000000COCOOOOS
0000000000000 ee
000000000CCOCOOOOS
0000000000000 e e
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 e e
0000000000000 e e
0000000000000 O0O0CF°
0000000000000 O0CKOCO




30 | Atomistic/Continuum Schwarz

» Step #1: Solve atomistic problem

» Record new positions for all unconstrained atoms

 Assign Dirichlet boundary conditions for FE problem

0000000000COOOOS
00000000000COCOOOS
0000000000000 ee
00000000000OCOOOS
0000000000000 ee
0000000000000 ee
L1 _JojoJololoJoJoJoXoXoyoRo) X
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 00FO0
0000000000000 00O
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« Step #2: Solve finite element problem

« Record new positions for all unconstrained finite element nodes

 Assign Dirichlet boundary conditions for atomistic problem




» | Atomistic/Continuum Schwarz

« Step #2: Solve finite element problem
« Record new positions for all unconstrained finite element nodes
 Assign Dirichlet boundary conditions for atomistic problem




1 | Atomistic/Continuum Schwarz

« Step #2: Solve finite element problem
« Record new positions for all unconstrained finite element nodes
 Assign Dirichlet boundary conditions for atomistic problem




34 | Atomistic/Continuum Schwarz

» Step #2: Solve finite element problem

« Record new positions for all unconstrained finite element nodes

» Assign Dirichlet boundary conditions for atomistic problem

000000000COCOOOOOS
000000000OCOCOOOOS
0000000000000 ee
0000000000000 e
0000000000000 ee
0000000000000 ee
0000000000000 e
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 e
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 ee
0000000000000 00FO0
0000000000000 00O




35 | Atomistic/Continuum Schwarz Convergence Theory

* Let Kcuc = f (globally) and K,u, = f (globally)

« Each AS iteration is projection of error
l‘In+1/2 -u" = PA (uA _ un)
n+l1 _ . .n+1/2 _ ggnt1/2

where



% | Atomistic/Continuum Schwarz Convergence Theory

* Let . .
e,=u'-u, u.=u,-d

+ Canshow e} =[I-(P, +P.-PP,) |e} +P.d

© ket VAV'=|-(P, +P.-P.P,)
* Assume 0<0(A)<1

 Then
depends on depends on
overlap models
S;crévergence _\A
. n o(A ,, (V)
et so(h) [K(w[ezlf,&) HPcdH] +[1_E,()Af) P.d
i J




7 | Atomistic/Continuum Schwarz Convergence Theory

* What about ||P.d||? Consider following decomposition:

QA) Q©)
A L —
;
/o e e e o o o o o o $ - 8
——
Q (23 Q,
— At > Overlap > Fe —

Let d = [dq d; d3]T Then, ||P.d|| ~ ||d,]l, ||ds]l.

Small error if ||d,[|, ||d;]| < 1.
Occurs if FE solution well approximates atomistic solution in Q,, Q; (pure continuum domain + overlap
domain).

If d, = d; = 0, can recover (global) atomistic solution!



38 | A Simple 1D Model*

* Atomic model: Chain of 101 Atoms

. 11 1 1
Ei = E[Elﬂ (ui -u;_, )2 +Ek1 (ui+1 'ui)2 +Ek2 (ui 'ui-z)

) )

)
-/

Ky K k. =k, + 4,
E’ = 1k
i_E c(ul-ul‘l) /kc
o/ A\ o/ A N O/ N o/ N \:_a_>

W. A. Curtin and R. E. Miller, Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng., 11:R33-R68, 2003.



39 | A Simple ID Model

* Atomic model: Chain of 101 Atoms

Q(A) Q)
/4
/T o o o ° ° T o o \ T
left end point point
fixed force force

* 0<0(A) <1 (proof omitted)

» Vary overlap; Observe effect upon converged solution



o | A Simple |D Model

» Left atom fixed; Force applied to right atom and atom 51
« # Iterations decreases with increasing overlap

« Expected from DD theory

» Converge to atomistic solution

0.56

0.54
3 c(A) # Iterations
052 +
1 0.9551 387 .
T 05}
2 | 0.8840 145 :
3 0.8173 89 g 08
4 | 0.7555 65 01| A =
B— 5=3
0447 —B—&=4
—#— Atomistic
/D: | | | | | . | —¢—FEA
. L. AR a7 48 49 50 a1 52 53 a4 55 ol
Atomistic, 6 =4 AormNode



» | Domain Decomposition

Historical and Mathematical Origins

Convergence Analysis

Multiscale Modeling: Atomistic-to-Continuum Coupling

Multi-Model Coupling: Classical Elasticity and Peridynamics




2 | Heterogeneous Domain Decomposition

« Domain decomposition methods all assume the existence of some global problem to be solved, and show
how to break it into subdomains.

« Each subdomain knows about the other subdomains only through its boundary.

» This presents the opportunity to substitute out one subdomain with a completely different model, and
provides an algorithmic framework for mathematically consistent multi-model coupling.

Global Model Homogeneous Heterogeneous

Domain-Decomposed Domain-Decomposed
Model Model
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Local/Nonlocal Coupling™ |
» Classical linear elasticity is a local model
« 7-S(us(x)) +b(x) =0, xeQ
+ $(09) = i ((5) + (52) )|+ i (52 + (529 y
i M
* Peridynamics is a nonlocal model : Qp+s H
fHXf(up(x’) —u,(%),x’ — x)dV, + b(x) = 0, XxeQ, I
0 L1l X

* |t is useful to be able to couple these models using only black-box
codes to leverage each model where it is of most value.

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931



« | Local/Nonlocal Coupling*

» Solve the coupled system using Alternating Schwarz

« Boundary Conditions for Linear Elastic Domain
« Dirichlet: uf(x) = up~'(x), V xeT|

« Neumann: S(ug(x)) ‘ng =S (ug‘l(x)) ‘ng, V Xel
* Robin: S(u?(x)) ‘ng+ Ruf(x) =S (ug‘l(x)) * N +Ru{,}‘1 (x), V xeTl,

« Boundary Conditions for Peridynamic Domain
» Dirichlet: up(x) = ug(x), V xel,
- Dirichlet w/ Aitken Acceleration: ug(x) = r“ug‘l(x) + (1 -tui(x), V xel,

n __ n-1(-n-1 _ (Qn_l_Qn)'Qn n _ ,,n I e |
™= (T 1) L= where Q" = ug(x) —up™" (%)
Ql‘l— _Qn

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



s | Local/Nonlocal Coupling*

« We can seek an optimal R (Robin coefficient) analytically for a simple problem

Qs yA Qs
« Simplified Peridynamic Model Ouee] Oore
. IE+nl—lIE]l &+ _ r  Qp —
fHXC( H IIE+nII) dVy =0, xeQ,

« Simplified Linear Elastic Model (v = 1/3)
. 3E d*us , 3Eduy

Pttt

2 0x2 8 dy? = 1, Xell
« Boundary Conditions
. . . 3EQdul n_  3Edup™! n—1 _

- Dirichlet + Aitken: ug(x) = r“ug‘l(x) + (1 -tuf(x), V xel,

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.

i



p | Local/Nonlocal Coupling™

» Convergence analysis based on Fourier

* us(xy) = 2y (ls)y(X)cos (WTY)’ up(x,y) = ZV(GP)V(X)COS (%)

» Define reduction factor in frequency space
R (G NS CON

Y@,

* The reduction factor can be determined analytically as a function of R, t™

(u") (?E”_Il — g_f‘l};‘ ~gy
PV ' (2 .}I}x
pn{R .L.n) _ P
¥ ’ i1 TYX T ”‘EJI—I }
(Up )y le2L —e 2L B2y
~ ~ ¢ wyly —wyLy nyL —nyLy wyLy —myly
(—35?' ({? L 4 e 2L )—]—R(.{? 3L —e 2L )) (E L — e 2L )
="+ (1 —-7")- - _
3Eny | xyly -yl myL —myL) TF}”LJ —xyly
— e L 4 e 2L 4+ Rle 2L —e 2L e 2L — g I

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



47| Local/Nonlocal Coupling™

» Test problem: Plate under uniaxial tension

 Manufactured solution satisfies both local and nonlocal —
Overlapping (PD+FE) :
0.8(1-0)(1+V) .
u( ) L) U (X+1) o s o |2m
* UsX YY) = —
. 0.80(E1+U) (y n 1) :
2m
' — Dirichlet- Dirichlet
. Conver.gence Wl:th qptimal R, T M Uikt
« Optimal Robin-Aitken (16 steps) =5 Dlelchlu Altem
« Optimal Robin-Dirichlet (35 steps) ~ Robin-Aitken

« Neumann-Aitken (39 steps)
 Dirichlet-Aitken (94 steps)
 Dirichlet-Dirichlet (161 steps)
* Neumann-Dirichlet (divergent).

1 30 60 a0 120 150
lteration number

L? errors of displacement

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



8 | Local/Nonlocal Coupling™

« Test problem: Plate under uniaxial tension

1_5 T T T = s |2 & = & | T T T T T T T T T
i 3 —Robin-Dirichlet
= 5L B 10° | ]
8 T HHH:HHIHHI.'.lllll"::;';:_:':z‘-é ------- g
E 1 ' """ ‘ .............. ::.:t:j:‘ff.'.'.'.'::::::::: .‘E
c g 001 0 o .21 1
o —=1 SHEE = 10
n— 05 l-. Y o =2 = . S /
o | ™= PE i i 5
= i :H -
3 | T 3
QO i 3 H S
m 0 L L 1 L ! ! ] : 0 1 | | | | | | | 1
Neumann 0.5 1 2 4 8 16 32 Dirichlet zbileumann 0.5 1 2 4 8 16 32 100 Dirichlet

R/E R/E

Reduction factor for various # Iterations for convergence
frequencies for 1D analysis for 2D plate under uniaxial
tension

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.



o | Local/Nonlocal Coupling™

« Example with fracture in peridynamic domain

A
\

N
D y / —
— e
— e
<— E- -------------------- i —>
— e .
G— w5 |om
S 20 mm —>
— Overlapping (PD+FE) —
— _
< :: __:: Region where damage is allowed —>

2m

Plate with hole under
uniaxial tension

displacement X displacement Y Damage
t 1.500e-04 1.000e-04 E5.4559»01
7.56-5 E5e-5 “0.40912

E E 027275

Eée-(n
-1.000e-04

E 7505 Eo. 13637
E, 1.500e-04 0.000e+00

displacement X displacement Y Damage
[ 1.500e-04 1.000e-04 I 4556-01
%7.5e-5 ESe-S £0.40912
0 0 027275
i—7.5e—5 Esers EO- 13637
-1.500e-04 -1.000e-04 0.000e+00
displacement X displacement Y Damage
1.500e-04 1.000e-04 Es.assem
E745e—5 E_Se—s ;;0.40912
s ) ~0.27275

Eo.lso:n

E-7.5e-5 E-se-s
-1.500e-04 -1.000e-04 0.000e+00

displacement X displacement Y
1.500e-04 1.000e-04
EZSe—S ES&S
‘0 o0
- 7505 505
E»l .500e-04 ‘ 1.000e-04
displacement X displacement Y Damage
E 1.500e-04 E] .000e-04 E5-
t7.50-5 t50.5 “0.40912
‘0 ‘0

Eo. 13637
0.000e+00

i-7A5e—5 E-Se-5
-1.500e-04 -1.000e-04

x-displacement y-displacement damage

*Y. Yu, F. F. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, CMAME, 340, 2018, pp. 905-931.




50 | Conclusions

Today, we discussed:

 Historical and mathematical origins of Alternating
Schwarz

« Some convergence analysis
 Applications to multiscale and multi-model coupling:

« Atomistic-to-continuum
» Local/Nonlocal coupling

Atomistic
Region

oo =]
000000000000000000000

00000000000000000000082%| 3~0

Overlapping (PD+FE)

FE PD

2m

Continuum

2m



