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Overview () e

= Bayesian Inference and Uncertainty Quantification Problems
" |ntroduction to MCMC

= Sequential Tempered MCMC

= Posterior Reliability Analysis using ST-MCMC

= Conclusion
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Motivation () e,

= The Bayesian Perspective:
* Probability distributions quantify uncertainty due to insufficient information

= Bayesian methods for identification and estimation are critical to the
robust system analysis

Goal:
Provide MCMC methods for computationally intensive
Bayesian inference problems in complex systems




Example Inference Problem: Water Distribution? (1)

Leak Detection and Posterior Failure Probability Assessment
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Example Inference Problem: System Identification () e

Prior distribution of the water Posterior distribution of the
system parameters water system parameters




Example Inference Problem: Reliability Analysis (T S,

Prior distribution of the Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters water system parameters

Posterior Estimate of Failure Probability
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The Bayesian Inference Problem () i,

Observations: D

Bayes’ Theorem

p(D|6,M)p(0| M)
p(D|M)




The Bayesian Inference Problem )

Observations: D

Bayes’ Theorem

p(D|6,M)p(8| M)
p(D|M)

p(D|O,M)p(0]| M)do

)

Y
Intractable




The Bayesian Inference Problem () i,

Observations: D

Bayes’ Theorem

p(D|6,M)p(0| M)
p(D|M)

. . . 1 &
Posterior Estimation: E[g(9) | D, M| = /9(0)19(9 | D, M) db = N;g(%)




The Bayesian Inference Problem () i,

Observations: D

Bayes’ Theorem

p(D|6,M)p(0| M)
p(D|M)

Exploration of the space + Accept/Reject _ Metropolis-Hastings
by proposal distribution correction - MCMC




The Bayesian Inference Problem () s,

Observations: D

Bayes’ Theorem

p(D[6,M)p(0| M)

p(D|M)
1 N
Posterior Estimation: E[g(0) | D, M] = /g(ﬂ)p(H | D, M) do ~ —ﬁ;g(é’i)

var [g (0)]
var [ 3 0 00)

Effective Number of Samples: ESS|[g(6:.x)] =




Metropolis-Hastings Algorithm L=

1. Initialize the state 6, randomly, usually
according to the prior, set n =1

2. Pick a candidate state 0;,,; according
to the proposal () (9;; +1 | 0r)

3. Accept or reject the candidate according
to a sampled uniform variable ¢ on [0, 1]:

B1 = ;z—ﬂ—l (<a (0;;,+1 | 0,,,)
072 C > o (0;'1,—]—1 E 071,)

(T (0)Q010)
(@ 10)=min (1 7G0T )

4. Increment n and go to step 2




Metropolis-Hastings Algorithm () i

1. Initialize the state #; randomly, usually
according to the prior, set n =1

2. Pick a candidate state 0;,,; according
to the proposal () (0; w1 | )

3. Accept or reject the candidate according
to a sampled uniform variable ¢ on [0, 1]:

Markov chain transition kernel

— ;z+l §§@(9;+1|9n) il K 9/ 9
0n+1~{0n C>04(0§,,+1|9n) ( | )

(T (0)Q(0]0)
(@10 =min (1 7G0T )

4. Increment n and go to step 2




Designing the Markov Chain Monte Carlo Kernel () S,

= Sufficient requirements to guarantee « () is the stationary distribution
of the Markov chain are Reversibility and Ergodicity

= Design objectives for choosing the Kernel K (6 | 9) :

* Minimizes the convergence time (burn-in) to the stationary distribution

* Minimizes the correlation when sampling the stationary distribution




Limitations of Classic MH MCMC () e

= Challenging to explore complicated
geometries distributions when the
proposal distribution does not adapt

Locally Identifiable Posterior
Distribution

= Many model evaluations are
necessary in high dimensions
because the MH chain mixes slowly

= Parallelization and HPC are difficult
because evolving the MH chain is
sequential
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Motivation () e,

= ST-MCMC methods use parallel chains that interact with each other to
speed up convergence

= ST-MCMC methods also enable us to solve the model selection and
failure probability estimation problems

= However, theoretical tools are still needed to aid in selecting algorithm
parameters

= Advanced MCMC kernels could be used to enhance performance




Sequential Tempered MCMC L=

= ST-MCMC methods combine:

1) Annealing: Introduce intermediate distributions
2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while
maintaining the distribution

= Examples: SMC?, Subset Simulation?, TMCMC3, AlTar/Catmip*, AIMS>,

and AMSSA®
1 Del Moral et al 2006 3 J. Ching and Y. C. Chen 2007 > S.E Minson, M. Simons, J.L. Beck 2013
2S.K. Au and J.L. Beck 2001 4J.L. Beck and K.M. Zuev 2013 6 E. Prudecio and S.H. Cheung 2012




Annealing () s,

B defines how much the data updates the intermediate distribution:

m: (0) < p(D | 6, p(0| M) B;€0,1]

Intermediate distributions at different B levels
Level 0: B, =0 Level 1: B, = B, + AB; Level 2: B, =B, +AB, Leveln: B, =1

Posterior




Annealing: Finding AB (i)

Find AB such that the coefficient of variation (k) of the sample weights is 1
Sample weight: w (gj) o p(D | Qj,M)Aﬂi

Coefficient of variation: x (w) — w

Current Level Set of Possible Next Betas

Weighted Sample
Populations




Importance Resampling e

= Resampling the population rebalances the weights as the distribution
changes. This discards unlikely samples and replicates likely samples

" Multinomial Resampling from level i-1 to level i:

Probability of selecting sample k: P (0; ; = 0;,_1 %) = w (0i—1%)

Sample weight: w (6;-1 ) < p(D | Hi—l,j,M)A'Bi




Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain

Proposal
Distribution

Markov Chain

Multiple
Markov Chains

24



Designing the ST-MCMC Algorithm =

= Algorithm Parameters
* Number of parallel Markov Chains
* Chain Length or target correlation
* Annealing/convergence rate i.e. coefficient of variation target

= MCMC Algorithm

* Freedom to choose the proposal distribution and its properties
* Design of the Markov Chain kernel

= Resampling scheme for importance sampling




Contribution 1:
Theoretical results to estimate the ESS of the sample population
and to choose algorithm parameters




Theoretical Study of Effective Sample Size in ST-MCMC () s,
Asymptotic Effective Sample Slze

1.0F
= We can approximate the evolution | ESS Approaches |
of the sample population ESS (n,) = Zero
using three MCMC parameters: = Not Accurate
Number of '4(.%
. - N« chains O
k+1 — Tk -
(N —=1) (1 £ %) p? + ny, =
/ \ O
Coefficient of MCMC LE)
Variation Correlation O
=
, o _ | Slow
= Parameter estimation is possible ! Non-zero ESS

when n, does not asymptotically
approach zero

0 1 2 3 4




Contribution 2:
Generalize the Modified Metropolis Algorithm (MMA?) to

efficiently sample high dimensional distributions with constraints

1 Au and Beck 2001

— ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————



Rank One Modified Metropolis Algorithm (ROMMA) () S,

= Sampling distributions with significant prior structure, like inequality

constraints, can slow down Metropolis type algorithms in high
dimensions

= Explicitly integrating prior constraint information into the MCMC
proposal can rapidly improve mixing




ROMMA Description (1) B _

Step k:
for i = 1 to Ngieps do

Draw P =P, or P = P_ } Randomly choose forward or reverse

ordering of components

} Compute the transformed components

} Perform rank one update

| Accept or Reject rank one update
— according to prior

end
CTE R D (Dlﬁ) ] | Accept or Reject full update according
Accept 0" = 6 with prob. min [p(’lﬂ)w"')’ | ~ to the data
end
S is V2 where X is the covariance N is the number of components

P, and P_ choose the ordering of the components  Ngeps 18 the number of steps in the Markov chain




Water Distribution System Reliability () i

Problem Formulation: Water Distribution System D@22,

e Estimate the probably of not
meeting minimum pressure
requirements

 Uncertain demands, leak
positions, and leak sizes

* Data is available giving the node
pressures under different loading
conditions

‘ Reservoir source

@ Pipe with unknown leak

@ Node with uncertain demand




Water System Reliability Analysis ="

Prior distribution of the Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters water system parameters

Posterior Estimate of Failure Probability
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Water System Reliability Results .

MMA/RWM ST-MCMC ROMMA ST-MCMC
Computational Time (min) Computation Time (min)

Prior Reliability (1.5 x 10) 2.0 1.2
Posterior Inference 605.5 20.3
Posterior Reliability (3.0 x 1077) 206.0 36.4
. %1073 Mean Leak Size during Failures 15 Mean Demand during Failures
—Prior | | | | | | [—Prior
6 H——Posterior i —Posterior
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Prior Reliability Comparison () i,
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RWM ROMMA
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Posterior Reliability Comparison () i,
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Future Directions for ST-MCMC () e,

= Using the sample population to build a better estimate of the global
properties of the posterior distribution to learn a more efficient MCMC
proposal

= Combining Sequential Tempering with Multilevel-Multifidelity
Hierarchies to reduce computational cost

= Better metrics for assessing correlation e.g. Canonical Correlation
Analysis (CCA)
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Conclusion () i

= Bayesian inference naturally expresses problems in system
identification and uncertainty quantification

= Sequential Tempered MCMC methods improve efficiency and
parallelism when solving System Identification and Posterior Reliability
Problems

= MCMC proposals that incorporate knowledge about the prior or
posterior can significantly help ST-MCMC algorithms scale




