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Overview

■ Bayesian Inference and Uncertainty Quantification Problems

■ Introduction to MCMC

■ Sequential Tempered MCMC

■ Posterior Reliability Analysis using ST-MCMC

■ Conclusion
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Motivation

• The Bayesian Perspective:

• Probability distributions quantify uncertainty due to insufficient information

• Bayesian methods for identification and estimation are critical to the
robust system analysis
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Goal:
Provide MCMC methods for computationally intensive
Bayesian inference problems in complex systems
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Example Inference Problem: Water Distributionl

Leak Detection and Posterior Failure Probability Assessment

1 Cunha and Sousa 1999
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Example Inference Problem: System Identification

Prior distribution of the water Posterior distribution of the
system parameters water system parameters

Data

• ==
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Example Inference Problem: Reliability Analysis

Prior distribution of the
water system parameters

Sandia
National
Laboratories

Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters

W

Posterior Estimate of Failure Probability
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The Bayesian Inference Problem

Observa ons:

Bayes' Theorem

p I 7 ) -

p(DIO,M)p(OIM) 

p(DiM)
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The Bayesian Inference Problem

M)

Observa o s:

7)(7)10 ,M)p(01].A4) 

PMP")

Bayes' Theorem

p (0 I 7 ), M) —

p (D I 0 p M) dO

Intractable
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The Bayesian Inference Problem

Posterior Estimation:

Observa o s:

Bayes' Theorem

p I D A4)

p(D A-1)p(Od) 

PMP")

K [g (0) I D , M s(e) p(e l D, A4) dO
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The Bayesian Inference Problem

Exploration of the space
by proposal distribution

Obse vations:

Bayes' Theorem

p D~-M)-
p(D M)p(OIM) 

p(DiM)

Accept/Reject
correction
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The Bayesian Inference Problem

Observa ons:

Bayes' Theorem

p l 7 ), M) =

p(DIO ,M)p(01.A4) 

P(P")

Posterior Estimation: E [g (0) l _

Effective Number of Samples: ES'S g

g(0)p(011),M)dO  

var [g )] 

N Eliv=i 9 0i)
)1]

var
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Metropolis-Hastings Algorithm

Initialize the state 01 ran artily, usually
accor ing to the prior, set n  1

2. Pick a candidate state Orc±i according
to the proposal Q (On'  l On)

3 Accept or reject the candidate ccording
o a sampled un form variable on [0, 1]

on =

a (0' 1 0) =

toini1 (a(0.17-1, 1 1lon)

on ( > a (0",,, 1 I On)

ill ( 71- (0') Q (0 l 0'))

7r (0) Q (0' l 0)

4. Increment n and go to step 2
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Proposal :
Distribution

Rejected
Candidates

z
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Metropolis-Hastings Algorithm

Initialize the state 01 ran omly, usually
according to the prior, set n 1

2. Pick a candidate state On' +1 according
to the proposal Q (On'  fl  1 l On)

3 Accept or reject the candidate according
o a sampled un form variable on [0, 1]

On  I  1

(0' 0) = min

WniilOn)
> a(O'n11 1 On)

(0') Q l 0'))

(0) Q l 0)

4. Increment n and go to step 2
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Markov chain transition kernel

K (0' 0)



Designing the Markov Chain Monte Carlo Kernel
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• Sufficient requirements to guarantee 7F (0) is the stationary distribution
of the Markov chain are Reversibility and Ergodicity

• Design objectives for choosing the Kernel K (0' 1 0) :

• Minimizes the convergence time (burn-in) to the stationary distribution

• Minimizes the :orrelation when sampling the stationary distribution



Limitations of Classic MH MCMC

■ Challenging to explore complicated
geometries distributions when the
proposal distribution does not adapt

■ Many model evaluations are
necessary in high dimensions
because the MH chain mixes slowly

■ Parallelization and HPC are difficult
because evolving the MH chain is
sequential
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Locally Identifiable Posterior
Distribution
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Motivation

■ ST-MCMC methods use parallel chains that interact with each other to
speed up convergence

■ ST-MCMC methods also enable us to solve the model selection and
failure probability estimation problems
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■ However, theoretical tools are still needed to aid in selecting algorithm
parameters

■ Advanced MCMC kernels could be used to enhance performance



Sequential Tempered MCMC
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■ ST-MCMC methods combine:

1) Annealing: Introduce intermediate distributions

2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while
maintaining the distribution

■ Examples: SMC1, Subset Simulation2, TMCMC3, AlTar/Catmip4, AIMS5,
and AMSSA6

1 Del Moral et al 2006

2 S.K. Au and J.L. Beck 2001

3 J. Ching and Y. C. Chen 2007 5 S.E Minson, M. Simons, J.L. Beck 2013

4 J.L. Beck and K.M. Zuev 2013 6 E. Prudecio and S.H. Cheung 2012



Annealing

defines how much the data updates the intermediate distribution:

7 ( ) a p (7)1

Level 0: [30 = 0

Prior

p

0 MY (3i p (0 M) ,3, E [0 1

Intermediate distributions at different p levels
Level 1: 131 = [30 + A[31 Level 2: [32 = 131 + A[32 Level n: Pon = 1
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Annealing: Finding Ap

Find Ap such that the coefficient of variation (. ) of the sample weights is 1

Current Level

Sample weight:

Coefficient of variation:

(O ') 1) (7) l

k (W) — c r (w)

Set of Possible Next Betas
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Importance Resampling

• Resampling the population rebalances the weights as the distribution
changes. This discards unlikely samples and replicates likely samples

• Multinomial Resampling from level i-1 to level i:

Probability of selecting sample k: p (O.  oi w 0-

Sample weight: w (0- p(D Oi_
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Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain
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Designing the ST-MCMC Algorithm

■ Algorithm Parameters

• Numtper ot paraiiei iviarkov Chains

• Chain Length or target correlation

• Annealing/convergence rate i.e. coefficient of variation target

■ MCMC Algorithm

• Freedom to choose the proposal distribution and its properties

• Design of the Markov Chain kernel

■ Resampling scheme for importance sampling
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r-
Contribution 1:

Theoretical results to estimate the ESS of the sample population
and to choose algorithm parameters

1



Theoretical Study of Effective Sample Size in ST-MCMC

• We can approximate the evolution

of the sample population ESS (nk)

using three MCMC parameters:

nk+i

Number of
' chains

(1V  1)(1   k2) p2 f nk

Coefficient of MCMC

Variation Correlation

• Parameter estimation is possible

when nk does not asymptotically

approach zero

1.0

0.0

0
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Asymptotic Effective Sample Size

ESS Approaches

Zero
Not Accurate

ito
St

dik/
4cc,.

wtote

Slow
Non-zero ESS

0 1 2 3

Coefficient of Variation (K)
4
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r-
Contribution 2:

Generalize the Modified Metropolis Algorithm (MMA1) to
efficiently sample high dimensional distributions with constraints

1

1 Au and Beck 2001



Rank One Modified Metropolis Algorithm (ROMMA)

■ Sampling distributions with significant prior structure, like inequality
constraints, can slow down Metropolis type algorithms in high
dimensions

■ Explicitly integrating prior constraint information into the MCMC
proposal can rapidly improve mixing
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ROMMA Description

Step k:
for o Arct„, do

Draw P=Ph or P = P
Draw

"pet R
Set
for j

'
IN,)

PSPT

1 to Nd do

I Accept   with prob.

end

Accept 0 11  fi h prob. 1m
p(T16) 
p(7)109 7

end
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Randomly choose forward or reverse
ordering of components

j-- Compute the transformed components

IPerform rank one update
Accept or Reject rank one update
according to prior

Accept or Reject full update according
to the data

S is -VE where E is the covariance Nd is the number of co ponents
P+ d P_ choose the ordering of the components Nsteps is the number of steps in the Markov chain
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Water Distribution System Reliability
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Problem Formulation: Water Distribution System

• Estimate the probably of not
meeting minimum pressure
requirements

• Uncertain demands, leak
positions, and leak sizes

• Data is available giving the node
pressures under different loading
conditions

0 Reservoir source

Pipe with unknown leak

Node with uncertain demand



Water System Reliability Analysis

Prior distribution of the
water system parameters
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Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters

W

Posterior Estimate of Failure Probability



Water System Reliability Results

x10-3
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MMA/RWM ST-MCMC

Computational Time (min)

ROMMA ST-MCMC

Computation Time (min)

Prior Reliability (1.5 x 10-5) 2.0 1.2

Posterior Inference 605.5 20.3

Posterior Reliability (3.0 x 10-7) 206.0 36.4
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Prior Reliability Comparison
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Posterior Sampling Comparison

1 08

105

—411—RWM

—8—ROMMA

700

600

TE500
2

cu
.E 400
H
c
o

.-t. 300

cg-
o
0 200

.,---. 
100

10-3 10 2 RWM ROMMA

Sandia
National
Laboratories



Posterior Reliability Comparison
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Future Directions for ST-MCMC
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■ Using the sample population to build a better estimate of the global
properties of the posterior distribution to learn a more efficient MCMC
proposal

■ Combining Sequential Tempering with Multilevel-Multifidelity
Hierarchies to reduce computational cost

■ Better metrics for assessing correlation e.g. Canonical Correlation
Analysis (CCA)



Conclusion

■ Bayesian inference naturally expresses problems in system
identification and uncertainty quantification

Sandia
National
Laboratoits

■ Sequential Tempered MCMC methods improve efficiency and
parallelism when solving System Identification and Posterior Reliability
Problems

■ MCMC proposals that incorporate knowledge about the prior or
posterior can significantly help ST-MCMC algorithms scale


