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Motivating Applications
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"111°"Itopology Optimization & Additive Manufacturing

Given Vo E (0,1) compute a density that solves:

Minimize R (f F • S(z) dx f t • S(z) dx)
0 < z < 1 

Ft

Boundary
cond

1 I

Forcing F(0

s.t. z(x) dx < VOID1, where S(z) = u solves

the linear elasticity equations

—V • (E(z) : = F ,

Ett = 2 (Vu + VuT),

cun = t,

u = g,

in D, a.s.

in D, a.s.

on Ft, a.s.

on I'd, a.s.

► Uncertain external forces (loads) and boundary conditions.
► Uncertain internal forces, e.g., residual stresses due to AM.
► Uncertain material properties (porosity, etc.) due to AM.
► Reliability formulation: Compute light-weight designs that minimize

the probability of structural failure.
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11.11°Nservoir Optimization: Secondary Oil Recovery

Given D c R3 and interest rate r >

MiniMiZe R (f ert C([S(z)[(t), z(t), t) dt)
z = 0

80

10 20 00 40

where S(z) = (s, v, p) solves the reservoir equations

—KA(s)Vp = v, in D, a.s.

V • v = q, in D, a.s.
500 1000 1500 2000 ats + V • (f(s)v) = in D, a.s.

(plus initial and boundary conditions).

► Porosity, (/), and permeability, K, are estimated from data (e.g.,
seismic inversion).

► Total mobility, À, and fractional flow function, f, may be uncertain.
► Risk-neutral formulation: Determine injection rates that minimize

cost on average.

► Risk-averse formulation: Determine injection rates that minimize
the average of the 10% worst costs.

ffl eidoianal
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"IIIL"Oontrol of Chemical Vapor Deposition Reactors

o

o

/Outflo

\a

Substrate

0
o

Consider the optimal control problem

1
min -7Z (f (V x U(z)) dx) + f 2 dx
z 2 D 2 F,

where S(z) = (U(z), P(z), T(z)) = (u,p, t) solves
the Boussinesq flow equations

(u • V)u + Vp + = 0 in D, a.s.

V • u = 0 in D, a.s.

—h At u • Vt = 0 in D, a.s.

t • n + h(z t) = 0 on rc, a.s.

(plus additional boundary conditions).

► Uncertain viscosity, thermal conductivity, substrate temperature, etc.
imply flow velocity, pressure and temperature are uncertain.

► Risk-averse formulation: Determine wall temperature that
minimizes the average of low-probability, large vorticity scenarios.

laboratodesNatimiSandia D. P. Kouri Optirnization and Control Under Uncertainty
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Direct Field Acoustic Testing

Consider the optimal control problem

min 'R (fp, (U(z) — w)(U(z) — w) dx) + f 1z 2 dx
D,

where U(z) = u solves the Helmholtz equation

—Au — K2(1 + 0-02u = lDcz in D, a.s.

Vu • n = iicu on OD, a.s.

► The refractive index of the device under investigation is often
uncertain.

► Risk-neutral formulation: Determine speaker output that produces
a material response that matches a desired vibration profile on
average.

► Risk-averse formulation: Determine speaker output that produces
a response that is "good" on average for the 10% worst scenarios.

( SandiaNationalLaboratories D. P. Kouri Oetrozation and Control Under Uncertainty 6



Outline

General Problem Formulation

D Sandia
National
Laboratories D. P. Kouri Optimization and Control Under Uncertainty 7



mom
' General PDE-Optimization under Uncertainty

Making Deterministic Problems Stochastic

Deterministic PDE-Constrained Optimization:
U and Z are reflexive Banach spaces, Zad is a closed convex subset of Z, Y
is a Banach space, J:UxZ— andc:UxZY:

Minimize '1(z)
zE4d

wherel(z) := J(S(z),z) and S(z) = u E U solves the PDE

c(u, z) = O.

Stochastic PDE-Constrained Optimization:
(52,.F,P) is a probability space. Objective function and PDE are now
parametrized, i.e.,J:UxZxS2—>Randc:UxZxQY:

Minimize J(z) = R(j(z))
zEZad

whereRz) := J(S(z), z, .) and S(z) = u : U solves the PDE

c(u, z, w) = O.

ID Sandia
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Notation

(52,T) is a measurable space

IP, P : —> [0,1] are probability measures

1. Expectation: Ep[X] = f X(w) dP(w) and E[X] = Ep[X]

2. Variance: Vp [X] = Ep RX — Ep [V] and V[X] = Vp [X]

3. Standard Deviation: ap[X] = Vp[X112 and cr[X = ap[X]

4 Distribution: Fx(x) = 11P(X < x)

5. Quantile: co(X) = inf ft E R Fx(x) > 13} = Fx1(0)

Sandia
National
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prow
Tensor Product Function Spaces

Lebesgue Spaces: For 1 < p < oo,

LP(S2, .F, P) := {v : R v T-measurable, f lv(co)IP dP(w) < oo} ,

(St, T, P):=Iv:S2—>R I v T-measurable, ess sup lv(w)l < oo} .

lff, g E LP (S2, T, thenf = g < > f (w) = g(w) for P almost all w E a

Tensor Spaces: Given a real Banach space W then

LP(S2, T, W := span {vx v E LP (S2, x .

Many norms exist for the vector space LP (S2, T, g W and given a norm
LP(S2,T,P) W is not necessarily complete.

Bochner Spaces: For 1 < p < oo and W a real Banach space

LP(R.F,P; W) := v : W I v strongly T-measurable, f llv(w)rw dP(co) < CO }

and similarly for p = oo. LP (S2, P; W) is the completion of LP (S2, P) W with
respect to the Bochner norm

1114110 ,P;W) := (.121114(COMPw dP (C4)))P and Ilull,,L00(11,T,P;vv) := ess sup llu(w)llw.

Again, if f, g E LP (52, P; W) then f — g < > f(w) = g(w) for P almost all w E

C Sandia
National
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"mom
Assumptions on PDE Solution Map S(z)

1. For each z E Z, c(u, z, = 0 is well posed, i.e.,
(i) E! S(z) : S2 —> LI such that c(S(z),z, .) = 0 a.s. for all z;
(ii) 0 < c(.) e (52, T, IP), 1 < q < oo and an increasing function

p : [0, so) —> [O. oo) both independent of z such that

s(z)Hu < cp( lzHz) a.s. vz E Zad.

2. S(z) is strongly measurable Vz E Zad   S(z) E (C1, T,P; U).

3. z S(z) satisfies the continuity property

z in Z > S(zn) S(z) in U, a.s.

4. V D Zad, V open, such that S : V —> LI (S2, P; U) is
continuously Fréchet differentiable.

Senstivity Equation: To compute the sensitivity of S(z) in the
direction h e Z solve:

cu(S(z),z, (z)h + cz(S(z),z, -)h = 0 a.s.
(I) Sandia
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pielOW
• wg.kv ta0. Example: Linear Elliptic PDE

Let D c Rn be a bounded Lipschitz domain, U = Y = Z = 1 (D)
and A : rn":

(c(u, z, co) , v)u. ,L1 := f (A(w)Vu(x)) • Vv(x) dx - (z, v)ty. • for v E H,!)-(D).

If 0 < c < e < 00 such that

AGO( c < < c a.s.- -

then Lax-Milgram  > existence of a unique solution u E 14(D) to
c(u, z, .) = 0 for fixed z a.s. Moreover,

cllys(z)a.2(D) < 11z11H-l(D)11s(z)11N(D)

Hence, Poincaré's inequality guarantees that

Ilos(Z)IIL2(D) a.s.

and S : 1-1-1 (D) , E, IP;M (D)).

Note: S with domain restricted to L2(D) is compact since L2(D) cc H-1 (D).

Sandia
National
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Uncertain Objective Functions

General Assumptions:

1. Integrability: 7(z) c LP (S2, F,P) for all z c Z;

2. Weak Lower Semicontinuity: If z„, z then

liminf E[79I(z,)] > lE[197(z)]
n—>

for all c (LP (S2, P))* satisfying 19 > 0 a.s.

Compare to normal integrands, i.e., the epigraph of J is measurable
and closed valued.

( Sandia
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Uncertain Objective Functions

Separable Objective Functions: J(u, z, co) = g(u, ca) + p(z)

1. Carathéodory: g(., w) is continuous a.s. and g(u, .) is measurable
Vu E U.

2. Growth Condition:
If q < 00, then 3 < a E 1.1(C2,F,P) and c > 0 such that

Ig(u, co)1 a(w) + Vu E U a.s.

lf q = oo, then V c > 0 3 -yc e LP (S2, T, IP) such that

w)l -yc(w) a.s. E LI, c.

3. Convexity: g(• , co) is convex a.s. (optional)

Sandia
National
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Uncertain Objective Functions
The Separable Case

Superposition (Nemytskii) Operator:
g : Lq(Q, T, P; U) LP (Q, T, P) where g(u) g(u(•), •).

1. If g is Carathéodory and satisfies the growth condition, then
g : Lq(Q,T,P; LP (Q, T,P) is continuous.

2. lf, in addition, g is convex, then g is &Meaux directionally
differentiable.

3. lf, in addition, g is locally Lipschitz, then g is Hadamard
directionally differentiable.

4. If g(. , co) is continuously Fréchet differentiable for a.s. and there
exists a > 0 and K E Ls (52, T, P) with

s = {pq / (q — (1 + a)p) if q > (1 + a)p
Do if q (1+ cv)p

such that

11g. (u w) - gu(v, w) U. < K(w)IIu - v a.s.

SandN Then g is Fréchet differentiable.C1) 
NationalLaboratories D. P. Kouri Optimization and Control Under Uncertainty 15



Example: Quadratic Objective Function

Let W be a real Hilbert space, w E W and C c r(U, W). Consider

J(u,z,w) =
1
Cu — 'y > o.

J is separable with g(u, w) = 211Cu wll vv 

1. Carathéodory: Satisfied since g has no dependence on co.

2. Growth Condition: Satisfied (using Young's inequality) with

a = I wl 2 and c = 11 C11
2
G(U,W).

3. Convexity: Clearly satisifed.

4. Differentiability: Satisfied with K = 11C112r(ii,vv) and a = 1.

Result: g : Lq(S2, P; U) LP (Q, F, P) is continuous and Fréchet
differentiable as long as q > 2p.

(1) Sandia
National
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The Functional 7Z
Assumptions & Existence of Minimizers

: LP (C2, , IP) —> II8 u {-ED}

► 'R, is convex and lower semicontinuous
► R. satisfies R(C) = C for all constants C;
► R, is monotonic, i.e., if X > a.s., then R(X) >

Existence: If Zad is convex, closed and bounded, then there exists a
minimizer of J(z) = R,(J(z)) in Zad•

Proof: Apply the direct method of the calculus of variations.

Note: The same result holds if Z = Zad and -1(z) is a.s. coercive, i.e.,
Zad = Z and J(z) has the coercivity propery that r > 0 and coercive
<do :Z u 1+00, such that

> r  > -1(z) > cp(z) a.s.

Cl) Sandia
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Outline

Quantifying Risk
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Modeling Risk Preference
What is risk? Possibility of loss or injury (Merriam Webster)

... In our optimization problem, J(S(z; •); •) is a risk!

We cannot directly minimize J(S(z; .), .) + p(z) E X := LP(S2, P)

... How should we quantify our risk?

► Traditional Stochastic Programming: Minimize on average

TZ(F(z)) = E[F(z)].

► Risk-Averse Stochastic Programming: Model risk preferences

(F(z)) = IE[.F(z)] + clE[(1-(z) — IELF(z)DP±P/P.

► Probabilistic Optimization: Minimize the probability of loss

R(T(z)) = P(.7.(z) > T).

► Stochastic Orders: Model risk preference with a benchmark Y

P(X < x) < P(Y < x) V x E R.
Sandia
National
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Quantifying Risk & Controlling Uncertainty

► Reduce variability of optimized system:

ERX — E[X] )2] or ERX — E[X])P±r/P

► Control rare events, reduce failure, and certify reliability:

P(X > t) or q (X) = inf {tell/ : P(X < t) >

► Minimize over undesirable events:

o
CI &ride

laboretoris

fCVaRo (X) =  
1 l 

FTc1 (a) da E[X X > q (X)]

D. P. Kouri

VaRa CVaR,

Optimization and Control Under Uncertainty 2



Mitigating Uncertainty by Shaping Distributions
Law Invariance & Stochastic Dominance

Law Invariance:

► R is law invariant if

Fx(t) = (t) Vt E R(X) = R(V).

If R is law invariant, then it is a function of distributions.

Stochastic Dominance:

► X dominates X' with respect to the 1st stochastic order, denoted X >-(i) X', if

Fx(t) < (t) Vt E

0- X dominates X' with repsect to the 2nd stochastic order, denoted X -(2) r, if

ft Fx(n) dn <ft Fxt (n) dr) Vt E R

E[(t — X)+] < E[(t — X')±] Vt E

Here, (x)+ = max{0, x}.

Consequences: Suppose R is law invariant:

P. If X > X' a.s. implies R(X) > R(V), then X -(1) X' implies R(X) > R(X');

► If R is lsc and convex, then —X' (2) —X implies R(X) > R(V).

► Law invariant R prefer dominated random variables!
Sandia
National
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Mean-Plus-Variance Risk
Markowitz, Portfolio Selection, 1952

A common risk functional in engineering application is

R(X) = E[X] + cV[X] for c > O.

Downsides:

► R penalizes variation below the mean.
► R is not monotonic.

Example: Shapiro, Dentcheva, Ruszczynski (2014)
Suppose Q {col, biz} with associated probabilities p e (0,1) and (1 — p).
Consider the stochastic program

Minimize R.(—(1z, — (2z2) subject to zi + z2 = 1 and z1, z2 > 0
Z2

where (1, (2 : Q R are

6 = a > 0, (1(co2) = 0, and (2(co1) = (2(c02) = O.

lf p < 1 — (ca)-1 , then 14-6) = —Pa + ca2p(1 — p) > R,(—(2) = 0
eventhough —(1 < —(2 for all w E Q.

M Sue=

1,T) lalxiatories D. P. Kouri Optimization and Control Under Uncertainty 22



Coherent Risk Measures

R : LP (5/, T, R U { oo} is coherent if

(R1) Convexity: For all X, X' e LP(S2, P) and for all 0 < t < 1,

R(tX + (1 — t)X) < tR(X) + (1 — t)R(V)

(R2) Monotonicity: For any x, r e LP(S2, satifying

X > a.s. > R(X) > R(V)

(R3) Translation Equivariance: For all X c LP (S- , , P) and t c R,

R(X + t) = R(X) + t

(R4) Positive Homogeneity: For all X e LP(52, P) and t > 0,

R(tX) = tR(X)

Ph. Artzner, F. Delbaen, J.-M. Eber & D. Heath, Coherent measures of risk. Math. Finance, 1999

C".) Sandia
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Coherent Risk Measures
Some Good and Not So Good Properties?

Biconjugate Representation:

► R is proper, convex and lsc <=>

R(X) = sup {E[79X] — R* (V) I 79 E dom(R*)} .

► R is translation equivariant and monotonic <

dom(R*) C {19 E (LP(Q, F,P))* I E[79] = 1, 79 > 0 a.s.}

► R is positive homogeneous <

R(X) = sup E[79X].
1.9Edoin(R*)

Example (Conditional Value-at-Risk (CVaR)): R(X) = qx(0)c10

dom(R*) = E (LP (Q, F, P))* E[v] = 1, 0< 
1 
1 <   a.s.} .

Differentiability: lf R : LP(Q, T,P) R is coherent, then R is Fréchet
differentiable < > /9 E (LP (Q, F, P))* with 6' > 0 a.s., E[79] = 1, and

R(X) = E[VX] for all X e LP(Q, F, P).

O 
Sands
National
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CVaR and Kusuoka Representation

Let F x(x) = P(X < x), then CVaR is

1CVaR0 (X) :=  1  f FV (a) da
1 — o

VaRd CValRi

In fact, all law-invariant coherent risk measures have the representation

R (X) = sup f CVaR0 (X) di/(3)
PETT

where 9/1 is a set of probability measures on [0,1].

Spectral Risk Measures: Given a probability measure /I on [0,1],

R (X) = f CVaR0 (X) dv(,3)

f h((3)F)71(,3) c1,3 where h(0)
1

 := 1 civ(a)

S. Kusuoka, On law-invariant coherent risk measures, Advances in Math. Econ., 2001.

(I) Sandia
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Risk Neutral:

Risk Measure Examples

R.(X) = E[X]

is law invariant and coherent.

Mean-Plus-Deviation:

R.(X) = E[X] cEpC — E[X]r]l/P, c > 0

is law invariant and satisfies (R1), (R3) and (R4), but not (R2).

Mean-Plus-Upper-Semideviation:

R (X) = E[X] cEKX — E[X]f±11/P, c E [0,1]

is law invariant and coherent.

Conditional Value-at-Risk:

  1R.(X) =
1 
f Fx-1(ri) dr) = inf t 

1 

1  
ERX — 0+] , o < < 1

tE  

is law invariant and coherent.

Entropic Risk:
R (X) = A-1 lnE[exp(AX)], A > 0

is law invariant and satisfies (R1), (R2) and (R3), but not (R4).

/D Sandia
National
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More Measures of Risk
One can quantify risk using the optimized certainty equivalent risk measure

R(X) = in
R
fft E[v(X — OD-

t 

where v : R is a convex regret function that satisfies

v(0) = 0, v(x) > x Vx 0

Relation to Utility: u(x) = —v(—x) is a utility function

Properties: R. is convex and translation equivariant

R. is positive homogeneous < > v is piecewise linear with kink at 0
R. is monotonic < > v is nondecreasing

Mean-Plus-Variance
v(x)

CVaR Entropic Risk
v(x) v(x)

A. Ben Tal & M. Teboulle, An old-new concept of convex risk measures: The optimized certainty

risandiequiva/ents, Math. Finance, 2007.
National
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Pentew

R(X) = E[X] D (X) g

The Risk Quadrangle

m D (X) = R.(X) — IE[X]Risk
,

DR, Deviation
= inin{ t V(X — t)} tE5 = mtin (X — t)

N

E
t

cp
O

V (X) = E[X] E (X) 
0
0_

Regret Error E E (X) = V (X) — E[X]V -44—o-{

► R quantifies hazard — Used in optimization as objective function or constraint
▪ quantifies nonzeroness — Used in regression analysis, e.g., polynomial chaos

P. V quantifies displeasure for postive values — Used to define risk via disutility

► D quantifies nonconstancy — Used to define risk via variability

Quantile Quadrangle: 0 < < 1 Safety Margins Quadrangle: c > 0

R(X) = CVaRo, (X) D (X) = CVa12,,, (X — E[X]) R(X) = E[X] ca(X) D(X) = ca(X)

V (X) = lE[X+] E(X) = E[ X+ + X_ ] V (X) = E[X] clIXII 2 (X) = c11X112

s(X) = q (X) s(X) = E[X]

R. T. Rockafellar & S. Uryasev, The fundamental risk quadrangle in risk management,
optimization, and statistical estimation, Surveys in OR & Managment Science, 2013.

0 Sandia
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Superquantile Quadrangle

Choosing the uniform probability measure on [0,1],

1 
v(S) = 

1 /3 , s
1[0,1] (a) da,

— 

produces the second-order CVaR

R(X) = 
1 
1
 f CVaRc, (X) da

Sp
ec

tr
al

 F
un

ct
io

n,
 h
(a

) 

Second-order CVaR is a product of the risk quadrangle:

11 0,

Confidence Level, Ce

R(X)
1

CVaR, da D(X)
1

CValZa E[X]) da= 
1

(X)
[3

f
= (X —

V
1 I

da E
1

da E(X) = 
1

(CVaR,„ (X)) +
f

— o
(X) = 

1 —
f (CVaLy (X)) + — [X]
o

S (X) = CVaRo (X)

R. T. Rockafellar & J. O. Royset, Random variables, monotone relations, and convex analysis,
Math. Programming, 2014.

Sandia
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Example — CVaR
Opttrnal Control of 1D Elliptic Equation

Let 7 = 10, D = (-1,1), and w 1 and consider

1 1
m

1
inimize J(z) = -

2
CVaRo [f (S(z)e,x) - 1)2 dx1 + - f z(x)2 dx

ZEL2(-1,1) -1 2 _1

where S(z) = u c L2(Q,.F,IP;HR-1,1)) solves the weak form of

-Ox Wu), x)axu(w,x)) = f (w, x) + z(x)

u(w, -1) = 0, u(w,l) = 0

x c D. a.s..

a.s.

Q = [-0.1,0.1] x [-0.5,0.5] is endowed with the uniform density, and

the random field coefficients are

E(w, x) = 0.1 • 11(_1,,,,i) + 10 • 1(wi,1), and f(w, x) = exp(-(x - w2)2)•

Sandia
National
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Outline

Probabilistic Optimization
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Probabilistic Hazard
Standard Engineering Prospective

X = j(z) = "cost" signaling "danger"

W2

X > x failure zone
threshold depending on

X < x O.K.

z

Probability of failure: R(X) = px(X) = IP(X > x)

► How to compute or at least estimate?
► How to cope with control variables z in optimization?

Both px(X) and the threshold change with z!

Troubles with this concept:

► Poor mathematical behavior is a serious handicap.
Sandia ► Failure probability ignores the degree of failure.13 NationalLaboratories D. R Kouri Optimization and Control Under Uncertainty 33



Buffered Probabilities
Rockafellar & Royset (2013), Mafusalov & Uryasev (2014), Norton & Uryasev (2014)

Utilizing CVaR in place of quantile in reliability

X > x failure zone

(.02 buffer zone
X = x

X < . K

W1 X = T (< X)

Buffered probability of failure: R(X) = px(X) = P(X > T(x))
where T(x) is determined by CVaR(l_pxpo)(X) = lE[X X > T(x)] = x.

bPOEX[X] = 1 — a where a solves CVaR,„ [X] = x.

PDF

= CVaRs

1 p,

a=1—py

CDF -

qp = VaRs qa q, =
Sandia
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Buffered Probability Properties

► Optimization representation:

bP0Ex[X] = mi
o
n E [(t (X — x) + 1)+]

t> 

► Takes into account values of outcomes in the distribution tail

► Closed, quasi-convex and monotonic in random variable X

► Lowest quasi-convex (in X) upper bound of POE

► Continuous with respect to threshold x E [E[N, ess sup X)

► Easy to manage (optimize with convex and linear programming)

► CVaR, [X] < x < > bPOEx [X] < 1 —

Objective function in optimization representation is nonsmooth!

Question: Is it possible to account for higher-order tail moments?

C1) Sandia
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!MOW .- • ...btu Higher-Moment Coherent Risk Measures
Higher-Moment Coherent Risk (HMCR) measures with p > 1 and E [0, 1)

HMCRP,0 [X] = t + 1 
1  

IE [(X — t)P+]1/P

1. As the name suggests, HMCRp,o is coherent and law invariant

2. When p = 1, we have that HMCR1„3 [X] = CVaRi3 [X]

3. HMCRp,s is generated from the risk quadrangle with regret measure

V(X) =  _
1  

E[(X)P±]1/P

Properties of HMCR: Suppose X is not degenerate (constant)

1. p HMCRp„3 [X] is nondecreasing

2. [3 1— HMCRp,0 [X] is nondecreasing and continuous

3. In fact, ,3 H HMCIZP,0 [X] is strictly increasing on [0, 1 — 7rx) with

7rx = prob(X = ess sup X)

4. HMCRp,o[X] = E[X] and HMCRp,i [X] = ess sup X

HMCRp„3 [X] has a nondecreasing and continuous inverse!

O sandiP. A. Krokhmal, Higher moment coherent risk measures, Quantitative Finance, 2007.
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Higher-Moment bPOE Properties
Kouri (2018)

► Optimization representation:

bP0Ep,x[X] = Tj_(1)-1E[(t(X — x) +1)P±P/P

► Takes into account moments of outcomes in the distribution tail

► Closed, quasi-convex and monotonic in random variable X

► Continuous with respect to threshold x E jE[X], ess sup X)

► Objective function in optimization representation is smooth in X

► HMCRp,, [X] < x < > bP0Ep,x [X] < 1 — a

► bPOEx [X] < (bP0E2,x [X])2 < . . . < (bP0Ep,, [X])P

0 Slide
Mond
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..mattvk
Example: Second-Moment Buffered Probability

Suppose X — N(0, 1) with cdf (1. and pdf 0. Let x > 0 then

Z := (t(X — x) + 1) N(1 — tx, t) V t > 0

Therefore, the buffered probability of X exceeding x is

bP0E, [X] = Vp{1 — 43(x — 1 /t) t¢)(x — 1/t)}

and the second order buffered probability of X exceeding x is

(bP0E2,x[X])2 = 71j_(1)1{ (1 + t2)(1 — cl.(x — 1/t)) + (t2x + t)0(x — 1/t)}

x POEX [X] bPOEx [X] (bP0E2,x [X] )2 bP0E2,x [X] x = 3

0 0.5 1 1 1
1 0.15866 0.89894 1 1

0.8

2 0.02275 0.32584 0.99608 0.99804
0.8

3 0.00135 0.03802 0.49553 0.70394 0.4

4 0.00003 0.00150 0.12966 0.36008 0.2

5 2.87e-7 0.00002 0.01890 0.13746 2 3 4 5

6 9.87e-10 3.84e-7 0.00158 0.03973 Order 1 and Order 2

()Sandia
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3D T6pology Optimization with Buffered Probability

Given compliance tolerance co, probability po E (0, 1), order q > 1,

min z dx =: vol(z) subject to bP0Eq,„ (f F • S(z)dx) < 1 — po0 z < 1 D

where S(z) = u solves the linear elasticity equations

—V • (E(z) : EU) = F,

EU = 1(VU VUT),

U = 0,

eu : n = 0,

Sandia
National
Laboratories
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: po = 0.75 and co = 2]E [fD F • S(1)dx]

Mean Value Risk Neutral bPOE

Pr

MV IRN bPOE
Volume Fraction 49.061% 47.634% 67.204%

C3 Sandia
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: po = 0.75 and co = 2]E [fD F • S(1)dx]

Mean Value Risk Neutral

Topology changes from beam to shell!

bPOE

MV IRN bPOE
Volume Fraction 49.061% 47.634% 67.204%
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: po = 0.75 and co = 2E [ fp F S(1)dx]

bP0E,„ bP0E2,c, bPOE3 Lo
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National
Laboratories

Order 1 2 3
Volume Fraction 67.204% 77.369% 80.075%
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: po = 0.75 and co = 2E [ fp F S(1)dx]

bP0E,„ bP0E2,c, bP0E3,c,

Topology changes from beam to shell!

Order 1 2 3
Volume Fraction 67.204% 77.369% 80.075%
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Outline

What if our uncertainty is uncertain?
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"---4,11111to What if our uncertainty is uncertain?
Distributionally Robust Stochastic Programming

(12,F) is a measurable space and prob. measure is unknown.
Consider

min 7?,(1(z)) = sup Eg(z)].
ZEZad PE2L

Ambiguity Set: 2t c {P : [0,1] P(Q) = 1} defined by data.
For example:

► Moment Matching: Given generalized moment data mi.,. • • ,mN,

= {P : [0,1] I P(S2) = 1, lEp[Oi] = mt, i = 1, . ,N} .

► (D-Divergence (e.g., Kullback-Leibler, x2, TV, Hellinger, ...):
Given a nominal Po and E > 0,

21. = {P : F —> [0,1] l P(S2) = 1. ap(P. Po) < .

► Wasserstein Distance: Given a nominal Po and E > 0,

{P:.F —> [0,1] P(Q) =1, sup f f (w) d (P — Po)(w) E}
feC
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Example: Moment Matching

Let ,cb, : R be .F-measurable functions and mi c rv for i = 1, ,N

{ 
Epkbi] = mi, i = 1, . . . ,Ne

21 = P : ..F —> [0,1] 1 P(10 = 1, .
Ep[Oi] < mi, i = Ne + 1, ... ,N

Theorem (Rogosinski): If 2.t 0, then for each z E Z there exists wi
and pi > 0 with p + • • • + PN+1 = 1 such that

N+1
70(z)) = sup lEp[i(z)] = E pi JGS(z)] (wi), z,

PE% i=1

W. W. Rogosinski, Moments of non-negative mass, Proceedings of the Royal Society of London:
Series A, Math. and Phys. Sciences, 1958.
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Example: (I)-Divergence
Supppose

(i) A nominal probability measure Po is given,

(ii) The random variable X E LP (C2, .7., Po), and

(iii) : [0, oo] is convex lower semicontinuous satisfying

(1)(1) = 0 and 43(x) = oo Vx < O.

Define, for fixed E > 0,

21. = E (LP(C2,F,Po))* Epp [19] = 1, 19 > 0, Epo [4)0)] < 6} •

Then R(X) = sup Epo [VX] = inf Pke + Epo [P4)* (X — it)]}
19ESL A>0,

is a Iaw-invariant coherent risk measure!

Example (Kullback-Leibler Divergence): (1,(x) = xln(x) — x + 1, x > 0

R,(X) = Ac + AlnEpo [eX .

A. Ben Tal & M. Teboulle, Penalty functions and duality in stochastic programming via
phi-divergence functionals, Mathematics of Operations Research, 1987.
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l'31! —4•111111 Robust Probabilitistic Optimization
Shapiro, Mafusalov, Uryasev, Kouri (2018)

When P is unknown, we can similarly robustify the POE and bPOE.

Probability: In general, we have that

POE (X) = sup P(X > x) = sup EpPlAj = R (in)
PE2t PE2L

where A = {w c X(w) > x} and R. is a coherent risk measure!

Buffered Probability: Under mild regularity conditions, we have

bP0E,*, (X) = sup min Ep [(t(X — x) 1)+1 = min sup Ep [(t(X — + 1)+1
PE% t>0 t>0 pE2t

= mi
0
n R,((t(X — x) + 1)±)

t> 

where R. is a coherent risk measure! For (I)-divergence ambiguity,

IDPOE(X) = min OE + + [PA.)* ((t(X — x) 1)+ — µ)] } .
t>o),>0,1,

ID Sandia
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PIIIP.r Distributionally Robust Contaminant Mitigation
Problem Description

Model contaminant spread by advection-diffusion on D = (0,1)2.
Determine controls that mitigate the contaminant

min 'R, 
4 D 
f S(z)2 dx) + p(z) subject to 0 < z < 1

= 

where S(z) = u : H1(D) solves

—V • (s(w)Vu(w)) V(w) • Vu(w) =f(w) — Bz,

u(w) = 0,

s(w)Vu(w) • n = 0,

in D, a.s.

on I'd, a.s.

on OD \ a.s.,

9 9

Bz =E zk exp —11x  and p(z) = kazdi = KC E 2k.
k=1 

2,2 
k=1

Control
xl

X2

1 2
0.25 0.50
0.25 0.25

3 4 5 6 7 8 9
0.75 0.25 0.50 0.75 0.25 0.50 0.75
0.25 0.50 0.50 0.50 0.75 0.75 0.75

Total of 37 random variables.

C Sandia
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Risk-Averse Contaminant Mitigation

Nominal Distribution: 4(w) U(-1, 1) with k = 1, . . . , 37

Diffusivity: 
I,c ) 1/2 x1±-,a

log(c c(w, x) — 0.5) = 1 + 6(w) \F + (kOk(x)k(w)
2

n=2

Advection:

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0   0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

Source:
5

f (w, x) = E 6+5k (W) exp —(x1 (w))2 exp 
( —(x2 (w))2 

k=1 260±5k(w)2 262+5k (w)2
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Numerical Results
DRO with KL-Divergence Ambiguity

7Z(X) = !.tfc) Ac + ln E [ex/11

1(z*) + p(z*)

—5-10
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

o.

000

1ogm(c)
10-3
10-2
10-1
1
5

10

1 2
0.410
0.560

15

3 4 5 6
— 1.000 —

— — 1.000 ---
- 1.000 — 1.000 ---
- 1.000 — 0.580 1.000 0.709
1.000 1.000 0.249 1.000 1.000 1.000

7 8 9

15

obj
3.465
3.637
4.186
5.939
8.124
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Outline

Computational Solution Methods
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Methods for Stochastic Optimization

1. Stochastic Approximation (SA): Stochastic subgradient
descent only requires a single sample at every iteration.

2. Progressive Hedging: Decoupled deterministic optimization via
alternating directions method of multipliers (ADMM).

3. Sample Average Approximation (SAA): (Quasi) Monte Carlo
approximation of expected value.

4. Adaptive Stochastic Collocation: Deterministic quadrature
approximation of expected value. Adaptivity using trust regions.

Note: The convergence of SA and SAA is probabilistic!

Note: Risk measures and probabilistic functionals are often
nonsmooth  > polynomial approximation and derivative-based
optimization may not apply.
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The Finite Noise Assumption

Suppose there exists a random vector : Q c V' and functions
J:UxZxE R and :UxZxE-4Ysuchthat

j(u, z, w) =1(u, z, (w)) and c(u, z, w)

Moreover, assume the probability law o has Lebesgue density
p: R, i.e., dIED =

This permits the change of variables from w E Q to c
Analysis now performed in weighted Lebesgue space

LPp(E) = {v : E R lv(0

L°:,°(E) and LPp(E; W) are similarly defined.

P 19(0 < 00} •

Independence: For adaptive stochastic collocation, we will assume
that the components of are independent and

0 Sandia
National
Laboratories

= [al, bl] x • • • x [am,bm] and

D. P. Kouri

P = P10 • • • pm.
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Stochastic Approximation

Set -1(z) = J(u(z),z, .). Let Z be Hilbert and Zad be closed convex.

Given zk E Zad and G(zio = Gk(0 such that E[Glc(0] E (9E[J(4)],
the SA iteration is

Zk+1 = HZad (Zk PkGk (4)), ltk > CI,

where 4 for k = 1, ... is an iid sequence of realizations and

llzad (z) = argminEadz  z — (11z •

Note: flz„ is (firmly) nonexpansive.

Note: For PDE-constrained optimization, SA requires a single
deterministic state and adjoint solve per iteration!

Must solve:

C(U, Zic, 4) — 0 and „(uk, zk, 4)* = -Iu(uk,zk,4).
H. Robbins & S. Monro, A stochastic approximation method, An. Math. Statist., 1951
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PIMP—7-A, Analysis for Linear-Elliptic Quadratic Control

Recall: (Spaces) Z = L2(D) and Zad = {z E Z < z < zb},
U= H4(D), Y = 1-1-1(D), W is a Hilbert space such that U y W,

z, = 11CU WaN

where C E L(U, W), w W and 7 > 0, and for v E

(4u, z, = I (A(OVu(x)) • V v(x) dx — I z(x)v(x) dx.

Note: J (z) = lq(z)] is strongly convex with constant 7.

Stochastic Approximation: Given zk c Z and /tic E U that solves
C (Uk Zk = 0

Gk(4) = 7Z1c + Alt

where Ak solves the adjoint equation

ID(A(6c)V Ak(x)) • V v(x) dx = — (Cuk — w, Cv)w by E U.

0 Sandia
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Analysis for Linear-Elliptic Quadratic Control

Let z* E Zad minimize J(z) over Zad then (since Ilzad is nonexpansive)

E[Ilzk+1 ellz] — E[Illizad(zk — itkGk (4)) — (z*)

C — z*Ili] + piN[IIGk(4) — 2/akERGk(6),Z1c Z*)Z1

zk only depends on 6, • • • , (which are iid), thus

E[(Zk — Z*, Gk(6c))z] = E[E[(Zk Z*, Gic(W)z16, • . . , G-1]]
= E[(Zk — z*, E[Gk(6) lel, . . . , 6—IDA
= E[(Zk — z*,ENT(4)])z]

E[(4 — z*,ENT(4) — vF(z* )1>z

•-yE[Ilzk

Law of Total Exp.

Fubini's Theorem

Optimality of z*

Strong Convexity of J
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Analysis for Linear-Elliptic Quadratic Control

Since Zad is bounded and u, A depend continuously on z, we have

E[IIG(z, 2z! A42 bZEZaa

E[114+1 - el& E[11.4 - el& + am2 - 20,-YE[Ilzk -

Now, set µk = 0/k, then

12z] 
27(8) E[114 e 12z] + 92;42

max{192M2(2-p9 — 1)-1 , IIZl — 112Z} Use Induction

E[Ilzk+l - z* Previous Results

Minimizing the right hand side with 6) > 0 gives 0* = 1/-y.

Note: The expected decay at each iteration is 0(k-1)

  to reach tolerance E requires 0(E-1) iterations (on average)!

0
 Sandia
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Progressive Hedging
Problem Assumptions: Suppose7(., e) is a convex random loss and is
discretely distributed. Consider the convex program

Minimize tEll(zr e)] = Epkyz,6)} •zczad
k=1

Progressive Hedging Algorithm:

Given z E Z and a Z-valued r.v. W(0 with E[W(e)] = O.

1. Compute (() E Zad a.s. that approximately solves

Minimize ti(z, + (W(e), z)z +
zEZad

2. Update "± = EK(e)] = p10 + +pNCN.

3. Update W(e) = W(e) + r (C — 2).

a.s.

Step 1 requires solving decoupled deterministic convex opt. problems!

However, objective function 7(., must be convex ...

R. T. Rockafellar & R. J.-B. Wets, Scenarios and policy aggregation in optimization under

O
sandencertainty, Math. Oper. Res., 1991.
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Sample Average Approximation

Idea: Approximate expected value in J using Monte Carlo.

Let ,/,/ be iid random samples of then 

x--. 

solve

N

Z
MinimiEZze {:iN(z) = -1\7. 1} •

ad k=1

Apply nonlinear programming algorithms to solve numerically.

Sandia
National
Laboratories D. P. Kouri Optimization and Control Under Uncertainty 58

Linear-Elliptic Quadratic Control:

(i) Let ZN E Zad minimize :IN over Zad
(ii) Let e E Zad minimize J over Zad.

Strong convexity of J and optimality of 4, /̀, z* imply

yIIZN — z* (47 — z*, '7,7(4) — '7,7(z*))z

— z*, '7,7(4) — V.7N(4))z

Therefore, - zkIlz < 1E[A] Eik4-1 =
O(N— ) Probabilistic!



WS*

Stochastic Collocation

idea: Approximate expected value in J using quadrature.

Let , be quad. points with weights w1, ,WN, then solve

Minimize :iN(z) =
Z EZad 

{
k=1

Apply nonlinear programming algorithms to solve numerically.

Linear-Elliptic Quadratic Control:

(i) Let ek E Zad minimize :.7N over Zad
(ii) Let Z* E Zad minimize J over Zad .

Strong convexity of J and optimality of ek, z* imply

7114 — z* d — z*,'7,7(4`1) — VJ(z*))z
< — z*, '7,7(40 — V:7N(4))z

Therefore, 71 z* - 4111z < E[A] WicAk Quad. Error
Sandia
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Sparse Grids and Adaptivity
Gerstner and Griebel 2003

► 1 D Operators: For k = 1, . . . , M, Eit), 0 and

Ok Eik — Er where Eik(g) f pk(Og(Ock

► Sparse-Grid Operator: For an index set / c NM,

Ei E(Ail 0 • • • 0 Aikivi)

iEz

► Admissibility: i E Z and i > j > j

► Error: Given the index set I c Nm, the error is

E Ei = • • • 0 4)

io/
► Adaptivity: Pick i¢ Z s.t. I u {4 admissible and AZ 0 • • • 0 ,4,4 "large"

•
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Trust-Region Algorithm

Given: zo, mo(s) J(zo + s), jo J, Ao > 0, and gtol > O.
While IrVmk(s)lz > gtol

1. Model Update: Choose a new mk(s) J(zk + s). ADAPTIVITY

2. Step Computation: Approximate a solution, sk, to the subproblem

min mk(s) subject to IlsI
scz

Z < Ak •

3. Objective Update: Choose a new Jk(z) j(z). ADAPTIVITY

4. Step Acceptance: Compute

Jk(zk) — Jk(zk + Sk) 
Pk =

111k(0) nik(Sk)

If pk > e (0,1), then zk+1 = Zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust region radius, .,k+1.

EndWhile
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impoirik
Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders (2013, 2014)

Inexact Gradients
There exists c > 0 independent of k such that

liVmk(0) — '7,7(4)ilz <

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w E (0, 1), and 0(z, s) 0 as r 0 such that

I(J(4) — ,7(zk + sk)) — (,7k(4) — ,71,(4 + Sk)) KO(4, sk)

e(zk, sk)w < n min { (mk (0) — mk(sk)), rk} •

Here, n > o is tied to algorithmic parameters and limk,0„ rk = O.
(Carter 1989, Ziems and Ulbrich 2013).

0- Cannot compute ,7(zk) and 0,7(4);

0- Control a posteriori errors using adaptive sparse grids.
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mom Optimal Control of Steady Burger's Equation

Let 7 = 10-3, R, = S2, = 12 = (0,1), and w 1 and consider

in 
,
I

i 
z(x)2 dxJ(z) = -E (u(.,x; z) - 1)2 dx1 + ±

1 [ il

zEL,2
m 

0,1) 2 po 2 0

where u = S(z) E q,(E; H1(0,1)) solves the weak form of

-v(0.9xxu(, x) + x)axu(, x) = f x) + z(x)

0) = 4(0, u(, = (0

(,x) E E x

E a

= [-1,1]4 is endowed with the uniform density p(0 2-4, and the
random field coefficients are

( ) and d1(0 =v(0 = f(,x) = —6
1000.100' - 

d 
0' = 

1 
-±1000' 
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Adaptive Sparse Grid Results

Spatial: Piecewise Linear Finite Elements
Stochastic: Maximum Level 8 Clenshaw-Curtis Sparse Grids

Algorithm NonlinPDE CPobj LinearPDE CPgrad Rel. Err.
Newton-CG 45,224 (1.0) 7,537 489,906 (1.0) 7,537
Grad. Adapt. 45,531 (1.0) 7,537 3,405 (143.9) 249 2.89 x 10-6
Full Adapt. 603 (75.0) 23 3,405 (143.9) 249 2.89 x 10-6

10 10 

9 9 9

8 8 8

7 7 7

6 6 6
,_0,1 5

544 4

3

2

1

ono
ocumacamo
oaaaaaaa

3

2 ammo
ocamosmoo

3

2
a
ammo
camoacmoo
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