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|opo|ogy Optimization & Additive Manufacturing

Given V;, € (0,1) compute a density that solves:

Minimize R (/DF - S(z) dx—i—/F t-5(z) dx)

0<z<1

s.t. [, z(x) dx < Vo|D|, where S(z) = u solves
the linear elasticity equations

Boundary
cond g(£),

| ! —V - (E(z) : eu) = F, inD, a.s.
Forcing. £ €= %(Vu +vu'), inD, a.s.
eun =, onI}, a.s.

u=g, onTy, as.

» Uncertain external forces (loads) and boundary conditions.
» Uncertain internal forces, e.g., residual stresses due to AM.

» Uncertain material properties (porosity, etc.) due to AM.

» Reliability formulation: Compute light-weight designs that minimize
‘the probability of structural failure.
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ﬁeservoir Optimization: Secondary Oil Recovery

Given D c R® and interest rate r > 0:

z=(9,7)

Minimize R </0Te” CUS@)](H), z(t), 1) dt)

|
m . /| where S(z) = (s,u,p) solves the reservoir equations
i o5 I
wa - —K\(s)Vp =, inD, a.s.
. a ; V-v=gq, inD, a.s.
10 20 3 40 50 60 [ 500 1000 1500 2000 d)ats + v . (f(S)U) — 77\7 in D7 as.

(plus initial and boundary conditions).

» Porosity, ¢, and permeability, K, are estimated from data (e.g.,
seismic inversion).

» Total mobility, A, and fractional flow function, f, may be uncertain.

» Risk-neutral formulation: Determine injection rates that minimize
cost on average.

» Risk-averse formulation: Determine injection rates that minimize

- the average of the 10% worst costs.
ndia
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Eontrol of Chemical Vapor Deposition Reactors

Consider the optimal control problem

m}n%R(/D(VxLI > /|zl dx

where S(z) = (U(z),P(z),T(z)) = (u,p,t) solves
the Boussinesq flow equations

—vVu+4 u-V)u+Vp+ntg=0 inD, as.

V-u=0 inD, as.

—kAt+u-Vt=0 inD, as.
kVt-n+h(z—t)=0 onl,, as.

(plus additional boundary conditions).

» Uncertain viscosity, thermal conductivity, substrate temperature, etc.
imply flow velocity, pressure and temperature are uncertain.

» Risk-averse formulation: Determine wall temperature that
minimizes the average of low-probability, large vorticity scenarios.
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Consider the optimal control problem

min %R ( [ we - wTe —w) dx>+% 122 dx

D

—

where U(z) = u solves the Helmholtz equation

—Au— k(140 u=1pz inD, as.
Vu-n=iku on dD, a.s.

54321012345

» The refractive index of the device under investigation is often
uncertain.

» Risk-neutral formulation: Determine speaker output that produces
a material response that matches a desired vibration profile on
average.

» Risk-averse formulation: Determine speaker output that produces

g2 ESPONSE that is “good” on average for the 10% worst scenarios.
National
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General PDE-Optimization under Uncertainty

Making Deterministic Problems Stochastic

Deterministic PDE-Constrained Optimization:
U and Z are reflexive Banach spaces, Z,q4 is a closed convex subset of Z, Y
isaBanachspace,]: UxZ —Randc:UxZ —Y:

M|Zr1€|rz1:;ze J(z)

~

where J(z) := J(5(z), z) and S(z) = u € U solves the PDE
c(u,z) =0.

Stochastic PDE-Constrained Optimization:
(Q, F,P) is a probability space. Objective function and PDE are now
parametrized,ie., ] : UXxZxQ —>Randc: UXxZxQ —Y:

Minimize 7 (z) = R(J(z))

where J(z) :=J(5(z),z,-) and S(z) = u : Q — U solves the PDE

c(u,z,w) =0.
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Notation

(Q, F) is a measurable space
P, P: F — [0,1] are probability measures

1. Expectation: Ep[X] = /Q X(w) dP(w) and E[X] = Es[X]
2. Variance: Vp[X] = Ep[(X — Ep[X])?] and V[X] = Vp[X]
3. Standard Deviation: op[X] = Vp[X]'/? and ¢[X] = op[X]

4. Distribution: Fx(x) =P(X <x)

5. Quantile: gs(X) =inf{t € R | Fx(x) > 8} =Fx'(B)
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Tensor Product Function Spaces

Lebesgue Spaces: For1 < p < oo,
L’(Q,F,P) := {v :Q — R | v F-measurable, /Q [o(w)]P dP(w) < oo} .
L*®(Q,F,P):={v:Q — R | v F-measurable, esssup |v(w)| < co}.
Iff, g€ ’(Q,F,P)thenf =g <= f(w) = g(w) for P almost all w € Q.
Tensor Spaces: Given a real Banach space W then
[P(Q,F,P)@ W:=span{vx | veLl(QF,P), x € W}.

Many norms exist for the vector space L7 (2, F,P) ® W and given a norm
LP(Q, F,P) ® W is not necessarily complete.

Bochner Spaces: For1 < p < oo and W a real Banach space
’(Q, F,P; W) := {v : QQ — W | vstrongly ]—‘-measurable,/ ||v(w)||€\, dP(w) < oo}
Q

and similarly for p = co. L (2, F,P; W) is the completion of LF (Q2, F,P) ® W with
respect to the Bochner norm

:
[ —— (/Q ||u(w>||’;vdP<w>) and  [lullpos a7 pw) = esssup Ju(w)llw-

Again, iff, g € LF(Q, F,P; W) then f = ¢ <= f(w) = g(w) for P almost all w € Q.
Sandia
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Assumptions on PDE Solution Map S(z)

1. Foreachz € Z, ¢(u,z,w) = 0 is well posed, i.e.,
(i) 3S(z) : @ — U such that ¢(5(z),z,-) =0 a.s. for all z;
(i) 30 < c(-) € L1(Q, F,P), 1 < g < oo and an increasing function
p:]0,00) = [0, 00) both independent of z such that

IS@)llu < cpllzllz) a.s. Vz € Zaa.
2. S(z) is strongly measurable Vz € Z,y = S(z) € LI(Q, F,P; U).
3. z — 5(z) satisfies the continuity property
zy, =z in Z = S(z,) = S(z) in U, as.

4. 3V D Z,4, Vopen,suchthat S : V — L1(Q, F,P; U) is
continuously Fréchet differentiable.

Senstivity Equation: To compute the sensitivity of S(z) in the
direction i € Z solve:

cu(S(2),z,°)S (z)h + ¢2(S(z),z,-)h =0 a.s.
Sandia
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y Example: Linear Elliptic PDE

Let D C R" be a bounded Lipschitz domain, U = H}(D), Y = Z = H~ (D)
and A: Q — R™":
(c(u,z,w), v)u=u == /(A(w)Vu(x)) -Vo(x)dx — (z,0)u+,u forv € Hy(D).
D

If 30 < ¢ <€ < oo such that

then Lax-Milgram = existence of a unique solution u € H}(D) to
c(u,z,-) = 0 for fixed z a.s. Moreover,

cllVS@)ll2m) < lzllu-10) I1S@) oy 25
Hence, Poincaré’s inequality guarantees that
IVS@)ll2y < Caplizll-1py as.

and S: H™Y(D) — L*=(Q, %, P; H}(D)).
Note: S with domain restricted to L?(D) is compact since L>(D) cc H™'(D).
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Uncertain Objective Functions

General Assumptions:

~

1. Integrability: J(z) € L/ (Q, F,P) for all z € Z;
2. Weak Lower Semicontinuity: If z, — z then

~ ~

liminf E[¢](z,)] > E[¢](z)]

n—oo

for all ¥ € (LP(Q, F,P))* satisfying ¥ > 0 a.s.

Compare to normal integrands, i.e., the epigraph of ] is measurable
and closed valued.
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Uncertain Objective Functions

Separable Objective Functions: J(u,z,w) = g(u,w) + p(2)

1. Carathéodory: g(-,w) is continuous a.s. and g(u, -) is measurable
Yu e .

2. Growth Condition:
If g < oo, then30 <a e LF(Q2, F,P)and c > 0 such that

lg(u,w)| < a(w) +cllu|? Vuel as.
If g=o0,thenV ¢ >0 3~ € LF(Q, F,P) such that
Ju,w)| <ye(w) as. Yuel, |ullu<ec.

3. Convexity: g(-,w) is convex a.s. (optional)
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Uncertain Objective Functions

The Separable Case
Superposition (Nemytskii) Operator:
G :L1(Q, F,P;U) — LF(Q, F,P) where G(u) = g(u(-), ).
1. If g is Carathéodory and satisfies the growth condition, then
G:L1(Q, F,P;U) — LF(Q, F,P) is continuous.
2. If, in addition, g is convex, then G is Gateaux directionally
differentiable.

3. If, in addition, g is locally Lipschitz, then G is Hadamard
directionally differentiable.

4. If g(-,w) is continuously Fréchet differentiable for a.s. and there
exists & > 0 and K € L*(Q2, 7, P) with

. {Pq/(q—(1+a)p) ifq> (1+a)p
00 ifg=010+a)p

such that

lIgu (1, w) — gu(v, w)[lux < K(w)[u—ollg as.
o Then G is Fréchet differentiable.
National
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Example: Quadratic Objective Function

Let W be a real Hilbert space, w € W and C € £(U, W). Consider

1 v
](M,Z,OJ) = EHCM - w”%/v + §||Z||%7 % = 0.

] is separable with g(u,w) = %HCu — w3
1. Carathéodory: Satisfied since g has no dependence on w.
2. Growth Condition: Satisfied (using Young'’s inequality) with

a=|wlfy and c=[ClZqumw-

3. Convexity: Clearly satisifed.
4. Differentiability: Satisfied with K = ”C”%:(U,W) and a = 1.

Result: G : L1(Q, F,P;U) — LF(Q, F,P) is continuous and Fréchet
differentiable as long as q > 2p.
Sandia
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The Functional R

Assumptions & Existence of Minimizers

R :LP(Q,F,P) = RU {+o0}
» R is convex and lower semicontinuous
» R satisfies R(C) = C for all constants C;
» R is monotonic, i.e., if X > X’ a.s., then R(X) > R(X").

Existence: If Z,4 is convex, closed and bounded, then there exists a
minimizer of J(z) = R(J(z)) in Zag.

Proof: Apply the direct method of the calculus of variations.

~

Note: The same result holds if Z = Z,4 and J(z) is a.s. coercive, i.e.,

~

Z.4 = Z and J(z) has the coercivity propery that 3 r > 0 and coercive
¢ :Z = RU {400}, such that

~

lzlz=r = J(z) > ¢(z) as.
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‘ Modeling Risk Preference

What is risk? Possibility of loss or injury (Merriam Webster)
... In our optimization problem, J(S(z;-), -) is a risk!

We cannot directly minimize J(S(z;-), ) + p(z) € X := LP(Q, F,P)
... How should we quantify our risk?

v

Traditional Stochastic Programming: Minimize on average

R(E(z)) = E[F(2)].

v

Risk-Averse Stochastic Programming: Model risk preferences

R(F(z)) = E[F(2)] + cE[(F(z) ~ E[F (2))),]'.

v

Probabilistic Optimization: Minimize the probability of loss

R(F(z)) =P(F(z) > 7).

v

Stochastic Orders: Model risk preference with a benchmark Y

P(X<x)<P(Y<x) VYxeR
Sandia
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Quantifying Risk & Controlling Uncertainty

» Reduce variability of optimized system:
E(X-E[X)? or E[X-EX)i]
» Control rare events, reduce failure, and certify reliability:
P(X >t) or ggX)=inf{teR:PX<t)>p3}

» Minimize over undesirable events:

CVaRy(X) = ﬁ /ﬁ Fx'(a)da ~ E[X| X > 45(X)]

VaRﬁ CVaRﬁ
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K/Iitigating Uncertainty by Shaping Distributions
N ce: Law Invariance & Stochastic Dominance

» R is law invariant if

Fx(t) =Fx/(t) VtER = R(X)=7RX).
If R is law invariant, then it is a function of distributions.

Stochastic Dominance:

» X dominates X’ with respect to the 15! stochastic order, denoted X =) X', if

Fx(t) < Fx: () VteR.

> X dominates X’ with repsect to the 2" stochastic order, denoted X =@ X, if

/t Fx(n)dns/[ Fx/(m)dn VteR
< E[t-X)4+] <E[(t—X)4] VtER.
Here, (x)+ = max{0, x}.
Consequences: Suppose R is law invariant:
> If X > X" a.s. implies R(X) > R(X'), then X =) X" implies R(X) > R(X');
> If R is Isc and convex, then —X’ >,y —X implies R(X) > R(X').
» Law invariant R prefer dominated random variables!
%&M D. P. Kouri Optimization and Control Under Uncertainty 21




Mean-Plus-Variance Risk

Markowitz, Portfolio Selection, 1952

A common risk functional in engineering application is
R(X) =E[X] 4 cV[X] forc>0.

Downsides:
» R penalizes variation below the mean.
» R is not monotonic.

Example: Shapiro, Dentcheva, Ruszczynski (2014)
Suppose Q = {wi,w>} with associated probabilities p € (0,1) and (1 — p).
Consider the stochastic program

Minimize R(—(iz1 — (z2) subjectto zi+z2 =1 and z;,22 >0
21,22
where (1, (2 : 2 — R are
Glw)=a>0, G(w)=0, and G(w1)=C(w2)=0.
0

lfp <1—(ca)™', then R(=G) = —pa+ca’p(l—p)>R(-G)=
eventhough —¢; < —( forallw € Q.
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, Coherent Risk Measures

R :LP(Q,F,P) - RU{co} is coherent if
(R1) Convexity: Forall X, X' € LP(Q, F,P)and forall 0 <t <1,

R(EX + (1 - HX) < tR(X) + (1 — HR(X')

(R2) Monotonicity: For any X, X’ € L (Q, F,P) satifying

X>X as. —% R(X) > R(X)

(R3) Translation Equivariance: For all X € L/(Q2, F,P) and t € R,

RX+1) =R(X) +¢

(R4) Positive Homogeneity: For all X € LP(Q2, F,P) and t > 0,

R(tX) = tR(X)

Ph. Artzner, F. Delbaen, J.-M. Eber & D. Heath, Coherent measures of risk. Math. Finance, 199
Sandia
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Coherent Risk Measures

Some Good and Not So Good Properties?

Biconjugate Representation:
> R is proper, convex and Isc <—-
R(X) = sup{E[¥X] — R"(9) | ¥ € dom(R™)}.
» R is translation equivariant and monotonic <~—-
dom(R") C {9 € (L'(Q,F,P))" | EW] =1, ¥ >0as.}
» R is positive homogeneous <—-
R(X)= sup E[¥X].

Yedom(R*)

Example (Conditional Value-at-Risk (CVaR)): R(X) = ﬁ f; gx(8)dp

dom(R*) = {19 € (L@ F,P) |E[] =1,0< 9 < - 1 : a.s.} .

Differentiability: If R : L7 (2, F,P) — R is coherent, then R is Fréchet
differentiable <— 39 € (L*(Q, F,P))* with 9 > 0a.s., E¥] =1, and
R(X) = E[¢¥X] for all X € LF(Q, F, P).

Sandia
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CVaR and Kusuoka Representation

Let Fx(x) = P(X < x), then CVaR is

CVaRj(X .1_5/5( " .,

VaRv‘f CVaRd
In fact, all law-invariant coherent risk measures have the representation
1
R(X) = sup | CVaRg(X)dpu(B)
HEM JO

where 91 is a set of probability measures on [0, 1].

Spectral Risk Measures: Given a probability measure v on [0, 1],

1
R(X) = /O CVaR;(X) dv(8)

1 B
_ /0 WB)F5'(8)dB where h(B) = 1Lcly(oz)

0 -«
S. Kusuoka, On law-invariant coherent risk measures, Advances in Math. Econ., 2001.
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Risk Measure Examples

Risk Neutral:

is law invariant and coherent.
Mean-Plus-Deviation:

R(X) = E[X] 4+ cEB[|X — E[X]P]V/?, ¢>0
is law invariant and satisfies (R1), (R3) and (R4), but not (R2).
Mean-Plus-Upper-Semideviation:

R(X) = E[X] + cE[(X — E[X]), 7, ce[0,1]
is law invariant and coherent.

Conditional Value-at-Risk:

1
R(X) = ﬁ/ﬁ Fx () dn = ing {t+ ﬁwxwm}, 0<p<1

is law invariant and coherent.

Entropic Risk:
R(X) = A" InElexp(AX)], A >0
is law invariant and satisfies (R1), (R2) and (R3), but not (R4).
Sandia

National
Laboratories D. P. Kouri Optimization and Control Under Uncertainty 26




, More Measures of Risk

One can quantify risk using the optimized certainty equivalent risk measure

R(X) = inf{t + E[o(X — £)]}
where v : R — R is a convex regret function that satisfies

v(0)=0, v(x)>x Vx#0
Relation to Utility: u(x) = —v(—x) is a utility function

Properties: R is convex and translation equivariant

R is positive homogeneous <= v is piecewise linear with kink at 0
‘R is monotonic <= v is nondecreasing

Mean-Plus-Variance CVaR Entropic Risk

0(x)

A. Ben Tal & M. Teboulle, An old-new concept of convex risk measures: The optimized certainty
Sug%gi%quivalents, Math. Finance, 2007.
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The Risk Quadrangle

(__Risk R J«—{Deviation D
4 . '

A4 A4
RegretV |<«—»{ Erroré |

‘R quantifies hazard — Used in optimization as objective function or constraint

£ quantifies nonzeroness — Used in regression analysis, e.g., polynomial chaos
V quantifies displeasure for postive values — Used to define risk via disutility

D quantifies nonconstancy — Used to define risk via variability

R(X) = E[X] + D(X)
= mtin{t + V(X -1t}

D(X) = R(X) — E[X]
= m‘iné'(X — 1)

Optimization
uoneuwnsy

V(X) =E[X] + £(X) E(X) = V(X) —E[X]

vvyyywy

Quantile Quadrangle: 0 < o < 1 Safety Margins Quadrangle: ¢ > 0

R(X) = CVaRa(X) D(X) = CVaRa (X — E[X]) R(X) =E[X] +co(X) D(X) = co(X)

V(X) = Z5EX4]  E(X) = E[325 X4 + X_] V(X) =EBX] + X[l E(X) =clIX]l2

1—a

S(X) = qa(X) S(X) = E[X]

R. T. Rockafellar & S. Uryasev, The fundamental risk quadrangle in risk management,
optimization, and statistical estimation, Surveys in OR & Managment Science, 2013.
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Superquantile Quadrangle

Choosing the uniform probability measure on 3, 1],
vS) = 125 [ 1)
T 1= B Js Bla) da,

produces the second-order CVaR

Spectral Function, h(«)

R(X) = ﬁ /ﬂ | CVaR..(X) da

B 1

Confidence Level, «

Second-order CVaR is a product of the risk quadrangle:

R(X) = ﬁ /B 'CVaRa(X)da DY) = ﬁ /6 | CVaRa (X — B[X]) da

1 1
V(X) = ﬁ /O (CVaRa (X))4 da  E(X) = ﬁ /D (CVaRq (X))+ da — E[X]

S(X) = CVaRg(X)

R. T. Rockafellar & J. O. Royset, Random variables, monotone relations, and convex analysis,
Math. Programming, 2014.
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Example — CVaR

Optimal Control of 1D Elliptic Equation

Lety=10,D = (-1,1), and w = 1 and consider

minimize [(z) = %CVaRﬂ

Y ! 2
— z(x)” dx
2€l?(~1,1) * 2 /_1 ®

/ (5@ (1) — 1) dx
=1

where S(z) = u € L*(Q, F,P; Hi(—1,1)) solves the weak form of

— 0y (e(w, x)Oyu(w, x)) = f(w, x) + z(x) xeD,a.s.,
uU(w,-1)=0, wu(w,1)=0 a.s.

Q =[-0.1,0.1] x [-0.5,0.5] is endowed with the uniform density, and
the random field coefficients are

€(w,x) =0.1- L1,y +10-1(, 1), and f(w,x) =exp(—(x — w)?).
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Probabilistic Hazard
Standard Engineering Prospective

X =J(z) = “cost” signaling “danger”

X > x failure zone
threshold depending on

N

w2

Probability of failure: R(X) =p:(X) =P(X > x)

» How to compute or at least estimate?

» How to cope with control variables z in optimization?
Both p,(X) and the threshold change with z!

Troubles with this concept:
» Poor mathematical behavior is a serious handicap.
saia > Failure probability ignores the degree of failure.
National
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Buffered Probabilities

Rockafellar & Royset (2013), Mafusalov & Uryasev (2014), Norton & Uryasev (2014)

Utilizing CVaR in place of quantile in reliability

X > z failure zone

wo buffer zone

=T

X £ 2 0K

N
Wi X=z4+1(<a)

Buffered probability of failure: R(X)=p (X) =P(X > 7(x))
where 7(x) is determined by CVaR(;_ (x))(X) = E[X[X > 7(x) ] = x.

bPOE,[X] =1—a where a solves CVaR,[X] = x.

PDF 1—p, CDF

gs = CVaRy a=1-7p,

qs = VaRy Qo Jou'= 1

Sandia
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; Buffered Probability Properties

» Optimization representation:

bPOE,[X] = min E[(F(X — %) + 1),

Takes into account values of outcomes in the distribution tail

v

v

Closed, quasi-convex and monotonic in random variable X

v

Lowest quasi-convex (in X) upper bound of POE

v

Continuous with respect to threshold x € [E[X], ess sup X)

v

Easy to manage (optimize with convex and linear programming)

> CVaR,[X] <x <= bPOEJ[X]<1-a

Objective function in optimization representation is nonsmooth!

Question: Is it possible to account for higher-order tail moments?
Sandia
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Higher-Moment Coherent Risk Measures
Higher-Moment Coherent Risk (HMCR) measures withp > 1and 8 € [0,1)

= 1 _ P i/p
HMCR, 5[X] = tlgﬂg{t—F 1= BE[(X )]
1. As the name suggests, HMCR, s is coherent and law invariant
2. When p = 1, we have that HMCR; 3[X] = CVaRg[X]
3. HMCRy 3 is generated from the risk quadrangle with regret measure

_ 1 pl/p
V(X) = T—5EIX)}]
Properties of HMCR: Suppose X is not degenerate (constant)
1. p — HMCR, g[X] is nondecreasing
2. B — HMCR, s[X] is nondecreasing and continuous
3. Infact, 8 = HMCR, 3[X] is strictly increasing on [0,1 — 7x) with
mx = prob(X = esssup X)
4. HMCR,o[X] = E[X] and HMCR; 1 [X] = esssup X

B — HMCR, 3[X] has a nondecreasing and continuous inverse!

Sug%girgl. A. Krokhmal, Higher moment coherent risk measures, Quantitative Finance, 2007.
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Higher-Moment bPOE Properties

Kouri (2018)

v

Optimization representation:

bPOE, «[X] = min E[(t(X — x) + AR

Takes into account moments of outcomes in the distribution tail

v

v

Closed, quasi-convex and monotonic in random variable X

v

Continuous with respect to threshold x € [E[X], ess sup X)

v

Objective function in optimization representation is smooth in X

> HMCR, .[X] <x <= bPOE,,[X]<1-a

v

bPOE,[X] < (bPOE,,[X])? < ... < (bPOE, . [X])
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E xample: Second-Moment Buffered Probability
Suppose X ~ N(0,1) with cdf ® and pdf ¢. Let x > 0 then

Z:=tX—-x)+1)~N1—tx,t) Vt>0
Therefore, the buffered probability of X exceeding x is

bPOE,[X] = min{1 — @(x — 1/£) + to(x — 1/1)}

and the second order buffered probability of X exceeding x is

(bPOE, ([X])? = min{(1 + £)(1 — B(x — 1/6)) + (Px + Hg(x — 1/8)}

x | POE;[X] DbPOE.[X] (bPOE;,[X])? bPOE,,[X] x=3

0] 05 1 1 1 '

1| 0.15866  0.89894 1 1

2 | 0.02275 0.32584  0.99608 0.99804

3 | 0.00135 0.03802  0.49553 0.70394

4 | 0.00003 0.00150  0.12966 0.36008

5 | 2.87e-7  0.00002  0.01890 0.13746 R S
6 | 9.87e-10 3.84e-7 0.00158 0.03973 R, A—
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55 Topology Optimization with Buffered Probability

Given compliance tolerance co, probability po € (0,1), order g > 1,

0<g<1

min zdx =: vol(z) subjectto bPOE,, (/ F. S(z)dx) <1-po
D D

where S(z) = u solves the linear elasticity equations

—V - (E(z) : eu) = F, inD
eu=(Vu+vu'), inD
u=20, onIp
eu:n=0, on 9D\ T'p
1
1
1
1
1
r ! ’? ‘
1
| [ Rl &4
’ n (1
l’ 1) -(
. ~
-
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—— }
Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh
Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: py = 0.75 and ¢g = 2E [ [, F - S(1)dx]

Mean Value Risk Neutral bPOE

MV RN bPOE
Volume Fraction | 49.061% 47.634% 67.204%
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh
Stochastic Discretization: Q = 120 Monte Carlo samples
Problem Data: py = 0.75 and ¢ = 2E [ [, F - 5(1)dx]

bPOE,, bPOE, bPOE;

Order 1 2 3
Volume Fraction | 67.204% 77.369% 80.075%
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ke Outline

What if our uncertainty is uncertain?
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What if our uncertainty is uncertain?

Distributionally Robust Stochastic Programming
(Q, F) is a measurable space and prob. measure is unknown.
Consider

~ ~

min R(](z)) = supEo[](2))
Z€Lad PeA

Ambiguity Set: 2l c {P: F — [0,1] | P(R2) =1} defined by data.
For example:
» Moment Matching: Given generalized moment data m, . .., my,

A={P:F—=[0,1] | P(Q) =1, Bp[ty] =my, i=1,...,N}.

» ®-Divergence (e.g., Kullback-Leibler, y2, TV, Hellinger, ...):
Given a nominal Py and € > 0,

A={P:F —[0,1] | P(Q) =1, Ds(P,Py) < €}.

» Wasserstein Distance: Given a nominal Py and € > 0,

A= {P:}'—> 0,1] | P(Q) =1, sup | flw)d(P - Pp)(w) < ¢
_ feL JQ

National
Laboratories D. P. Kouri Optimization and Control Under Uncertainty 43




Example: Moment Matching

Let ¢; : 2 — R be F-measurable functionsand m; e Rfori=1,...,N

]Ep[i/)i]zmi,i:L...,Ng

A=< P: F—[0,1 | P(Q) =1, .
]Ep[lpi]gm,‘,l’:Ne—Fl,...,N

Theorem (Rogosinski): If 2 # (), then for each z € Z there exists w;
and p; > 0 with py + - - + py 1 = 1 such that

N+1

R(J(2)) = sup Ep[] Zpl 2, wi)

Pe

W. W. Rogosinski, Moments of non-negative mass, Proceedings of the Royal Society of London:
Series A, Math. and Phys. Sciences, 1958.
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; Example: ®-Divergence

Supppose
(i) A nominal probability measure Py is given,
(i) The random variable X € L*(Q, F, Py), and
(iii) @ : R — [0, o0] is convex lower semicontinuous satisfying

®(1)=0 and P¢(x) =0 Vx<O0.
Define, for fixed € > 0,
A= {9 e (LP(QF,Po)" | Ep,[9] =1, 9 >0, Ep,[®(I)] < €}.
Then R(X) = sup B [9X] = inf (Ae+p-+En[(A0)(X — o)}

9eA
is a law-invariant coherent risk measure!

Example (Kullback-Leibler Divergence): ®(x) = xIn(x) —x+1,x >0

R(X) = inf {)\c + AlnEp, [e"/ A] } .

A. Ben Tal & M. Teboulle, Penalty functions and duality in stochastic programming via

phi-divergence functionals, Mathematics of Operations Research, 1987.
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; Robust Probabilitistic Optimization

Shapiro, Mafusalov, Uryasev, Kouri (2018)

When P is unknown, we can similarly robustify the POE and bPOE.

Probability: In general, we have that

POE}(X) = sup P(X > x) = supEp[14] = R(14)
PeA Pet

where A = {w € Q| X(w) > x} and R is a coherent risk measure!

Buffered Probability: Under mild regularity conditions, we have

bPOE}(X) = supminEp[(H(X — x) +1)4] = minsup Ep[(#(X — x) + 1) 4]
Peat 120 20 pea

= minR((HX —x) +1)+)

where R is a coherent risk measure! For ®-divergence ambiguity,

bPOE}(X) = _min {Ae+u+En[(A8) (X —x) + 1)y — )]}
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D istributionally Robust Contaminant Mitigation

Problem Description

Model contaminant spread by advection-diffusion on D = (0,1)*.
Determine controls that mitigate the contaminant

min R (% / S(z)? dx) +p(z) subjectto 0<z<1
“ D

where S(z) = u : Q@ — H'(D) solves

—V - (e(w)Vu(w)) + V(w) - Vu(w) = f(w) — Bz, in D, a.s.
u(w) =0, onTy, as.
e(w)Vu(w) -n =0, ondD\ Ty, as.,
9 2 9
—lx —
Bz = sz exp (—HZTPI(”Z> and  p(z) = kellz|l1 = nCsz.
k=1 7 k=1
2 3 4 5 6 i 8 9

Control 1
X1 0.25 050 0.75
X2 025 025 025 050

025 050 0.75 025 050 0.75
050 050 0.75 0.75 0.75

Total of 37 random variables.
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Risk-Averse Contaminant Mitigation

Nominal Distribution: & (w) ~ U(—1,1) withk=1,...,37

Diffusivity:

log(ce(w,x) —0.5) =1+ &1(w) (

Advection:

12 10
L) > G

1

N
N
s
%
NN

0.8

AP

0.6

welm A A SIS

0.4

s s

0.2

B T o v e

Y

0

0 0.2 0.4 0.6

Source:

flw,x) = Eaysi(w
k=1

Sandia
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Laboratories D. P. Kouri

Jexp (M) exp <—<xz - gn+5k<w>>2> |

0.8 1 0 0.2 0.4 0.6 0.8 1

261045k (w)? 2bn4sk(w)?
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Numerical Results

DRO with KL-Divergence Ambiguity
o X/
R(X)_g%{AcHlnE[e ]}

‘ Jz*) + p(z*) 1 J(z*)
- - ” -
0.7 0.7
05 0.5
04 0.4
0.3 0.3
0.1 [ 0.1
0 0
log, () | 1 2 3 4 5 6 7 8 9 | ob
103 —_— 0.410 — — 1.000 —— — — — | 3465
102 — 0560 — —_ 1000 — — — — | 3.637
107! —_ 1.000 —_ —_ 1.000 - — — — 1 4.186
1 e 1.000 —_— 0.580 1.000 0709 — — — | 5939
5 1.000 1.000 0.249 1.000 1.000 1.000 — — — | 8.124
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Computational Solution Methods
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Methods for Stochastic Optimization

1. Stochastic Approximation (SA): Stochastic subgradient
descent only requires a single sample at every iteration.

2. Progressive Hedging: Decoupled deterministic optimization via
alternating directions method of multipliers (ADMM).

3. Sample Average Approximation (SAA): (Quasi) Monte Carlo
approximation of expected value.

4. Adaptive Stochastic Collocation: Deterministic quadrature
approximation of expected value. Adaptivity using trust regions.

Note: The convergence of SA and SAA is probabilistic!

Note: Risk measures and probabilistic functionals are often
nonsmooth = polynomial approximation and derivative-based
optimization may not apply.
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The Finite Noise Assumption

Suppose there exists a random vector £ : Q — = C RM and functions
J:UxZxZ—Randt: U x Z x Z — Y such that

J(u,z,w) =J(u,z,6(w)) and c(u,z,w) =c(u,z,&{(w)).

Moreover, assume the probability law P o £~ has Lebesgue density
p:E—=R,ie,dPoé ! =pde.

This permits the change of variables fromw € Qto £ € E.
Analysis now performed in weighted Lebesgue space

e ={v:=or | [ pOPae d < oo}.

L (Z) and LL(Z; W) are similarly defined.

Independence: For adaptive stochastic collocation, we will assume
that the components of ¢ are independent and

E=lm,bi] x - x[am,bu] and p=p1 @ @ pum.
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; Stochastic Approximation

Set J(z) = J(u(z),z, ). Let Z be Hiloert and Z,q be closed convex.

Given zy € Z,q and G(zx, &) = Gi(€) such that E[Gx(¢)] € OE[J(zx)],
the SA iteration is

Zk1 = z, (zk — kGr(&)), e > 0,
where & fork =1,... is an iid sequence of realizations and

IIz,,(z) = argmin ||z — ¢||z.
(EZad
Note: IIz,, is (firmly) nonexpansive.
Note: For PDE-constrained optimization, SA requires a single
deterministic state and adjoint solve per iteration!

Must solve:

E(uazkvgk) =0 and Ell(ukazk’gk)*A = _Tu(ukazlﬁgk)'

i d‘H' Robbins & S. Monro, A stochastic approximation method, An. Math. Statist., 1951.
Natona
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.Analysis for Linear-Elliptic Quadratic Control

Recall: (Spaces) Z=L?>(D)and Zy = {z€Z | z, <z <z},
U =H}(D),Y =H"Y(D), Wis a Hilbert space such that U < W,

1 Y
J(1,2,€) = 5[1Cu — wlffy + S |zl

where C e L(U,W), we Wand~v >0,and forv e U

@A) Vau(x)) - Vo(x) dx — / 2 dx.

D

(5(,2,8), )1z = /

D

~

Note: 7(z) = E[J(z)] is strongly convex with constant ~.

Stochastic Approximation: Given z, € Z and u; € U that solves
c(uk, 2k, &) = 0
Gr(&k) = vzk + Ak

where )\, solves the adjoint equation

/ A& V() - Volx) dx — —(Cus — w, Cotw Vo € L.
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Analysis for Linear-Elliptic Quadratic Control

Let z* € Z,q minimize J(z) over Z,q4 then (since IIz , is nonexpansive)

E[|lz41 — 2°]|2) = E[||Tz,, (2 — mGe(&)) — Mz, (2)|1Z]
< E[|lz — 2*|15] + meE[IGk (&) 2] — 2E[(Ge (&), 2k — 27)7]

z only depends on &, ..., &1 (which are iid), thus
E[(zx — 2", Gk (&))z) = E[E[(zx — 2%, Gk(&))z|&1, - - -, &—1]]  Law of Total Exp.
=E[(zk — 2", E[Gk(&) &1, - - -, &—1])z]  Fubini’s Theorem
= E[(z — 2", E[VF(z)])z]
> E[(zx — z*, E[VE(z) — VF(z")])z  Optimality of z*
> VE[||z — z*||3]- Strong Convexity of 7




Analysis for Linear-Elliptic Quadratic Control

Since Z,4 is bounded and u, A depend continuously on z, we have
E[|G(z &)IIZ] < M* Yz € Za
= Elllzers — 2°112) < Ellax — 2°|I2] + 1iM® — 20u7E[ |12 — 2°|12].
Now, set 1 = 0/k, then

. 276 . 0°M?
Efla - 2181 < (1- 232 ) Ella - 1] + 2

_ max{e*M* (290 = D! ||z — 2*[[3}
— k »
Minimizing the right hand side with 6 > 0 gives 6* = 1/7.

Previous Results

Use Induction

Note: The expected decay at each iteration is O(k™!)

= to reach tolerance ¢ requires O(c~!) iterations (on average)!
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Progressive Hedging

Problem Assumptions: Suppose T(-, €) is a convex random loss and € is
discretely distributed. Consider the convex program

Mlnlmlze {E[j z,8)] = Zpk] z, &) }

k=1

Progressive Hedging Algorithm:
Given z € Z and a Z-valued r.v. W(&) with E[W(&)] = 0.
1. Compute ¢(§) € Z.q a.s. that approximately solves

M|n|m|ze {] z,€) + (W(€),2)z + 5|z — 2||§} as.

2. Update z = E[¢(¢)] = p1&i + - - . + pnin.
3. Update W(¢) = W(&) + r(¢(€) — 2).

Step 1 requires solving decoupled deterministic convex opt. problems!

However, objective function T(-., &) must be convex ...

R. T. Rockafellar & R. J.-B. Wets, Scenarios and policy aggregation in optimization under
sangii/N1certainty, Math. Oper. Res., 1991.
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Sample Average Approximation

Idea: Approximate expected value in 7 using Monte Carlo.
Let &, ..., &y be iid random samples of &, then solve

N
Minimize {fN(z) = %ZA(Z, €k)} :

z€Z.4
Apply nonlinear programming algorithms to solve numerically.

Linear-Elliptic Quadratic Control:
(i) Letzy € Z,qg minimize Jn over Zad
(i) Letz* € Z,q minimize J over Z,q4.
Strong convexity of 7 and optimality of zy,, z* imply

Yz — 2°|% < (2 — 25, VI (@) = VIE))z
< (@ — 27, VI (2h) — VIn(z))z

Therefore Yz* —zxllz <

[EIN - & S, x|, = ov?) Probabilistic!

@
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Stochastic Collocation

Idea: Approximate expected value in J using quadrature.

Let &, ..., & be quad. points with weights w;, ..., wy, then solve

M|Zn€|m|ze {JN Zwk] 2z, &) }

Apply nonlinear programming algorithms to solve numerically.

Linear-Elliptic Quadratic Control:
(i) Letzf € Zag minimize Jy over Z,q
(i) Letz* € Z,q minimize J over Z.q4.
Strong convexity of 7 and optimality of zy;, z* imply

Yzk — 2*|I7 < (2 — 2%, VI () — VI (2"))z
< (zh — 2, VI(2h) — VIN(ER))z

Therefore, v|z* — zx|lz < HIE Al -5 1wk>\kH = Quad. Error
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Sparse Grids and Adaptivity

Gerstner and Griebel 2003

v

1D Operators: Fork=1,...,M, E) =0and
A =E,—E" where Ei(g) == | p(¢)g(6)de
=k
Sparse-Grid Operator: For an index set Z ¢ N,
Er=) (A ® - ®A})
i€

Admissibility: ic€Z and i>j] = jeZ
Error: Given the index set Z ¢ NM, the error is

E_EIZEBA?®H.®A%)

i¢T .

Adaptivity: Picki ¢ Z s.t. ZU {i} admissible and A} @ - - - ® AM “large”

v

v

v

v

O
O
O
O
0
0
O
O

EEE0]
||/
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Trust-Region Algorithm

Given: zp, mo(s) = J(z0 +5), Jo = J, Ao > 0, and gtol > 0.
While ||V (s)||z > gtol

1. Model Update: Choose a new m(s) ~ J(zx +s). < ADAPTIVITY
2. Step Computation: Approximate a solution, s, to the subproblem

nélg mr(s) subjectto |s|lz < Ax.

3. Objective Update: Choose a new Ji(z) = J(z). < ADAPTIVITY
4. Step Acceptance: Compute

= Ji(z) = Tz +51)
¥ me(0) — me(se)

If pk>nE (0, 1), then Zk41 = Zk + Sk else Zk41 = Zk-
5. Trust Region Update: Choose a new trust region radius, Agy;.
EndWhile
Sandia
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Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders (2013, 2014)

Inexact Gradients
There exists ¢ > 0 independent of k such that

[Vm(0) = VI (z6)]| 2z < eminf||Vimi (0] z, Ar}
(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w € (0,1), and 6(z,s) — 0 as r — 0 such that

(T (zx) — T (2 +5)) — (Tr(zx) — Ti(zx + sx))| < KO(z, s¢)
0(zk, s)* < mmin { (m(0) — my(sx)), 7}

Here, n > O is tied to algorithmic parameters and limy_, o, 7x = 0.
(Carter 1989, Ziems and Ulbrich 2013).

» Cannot compute 7 (z) and V.J (z);
» Control a posteriori errors using adaptive sparse grids.
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Optimal Control of Steady Burger’s Equation

Lety =103, Q, = Q. = Q= (0,1), and w = 1 and consider

1
+1/ z(x)? dx
2 Jo

where u = S(z) € L?(Z; H'(0,1)) solves the weak form of

—v(§)0xxtt(§, x) + u(€, x)0xu(§, x) =f(§,x) +z(x)  (§,x) € ExQ,
M(f,O) = dO(E)v u(fa 1) = dl(f) e

Z = [-1,1]* is endowed with the uniform density p(¢) =274, and the
random field coefficients are

&
100°

min_ J)— %E Uol(u<.,x; 2)— 1) dx

ze€l2(0,1)

do(€) = 1+-2— . and dy(¢) =

v(€) =10972, f(&,x) = 1000’
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Adaptive Sparse Grid Results

Spatial: Piecewise Linear Finite Elements
Stochastic: Maximum Level 8 Clenshaw-Curtis Sparse Grids

Algorithm NonlinPDE CPop; LinearPDE CPgrad Rel. Err.
Newton-CG 45,224 (1.0) 7,537 489,906 (1.0) 7,537 -
Grad. Adapt. | 45,531 (1.0) 7,537 3,405 (143.9) 249 2.89x10°°
Full Adapt. 603 (75.0) 23 3,405 (143.9) 249 2.89x10°°
10, 10, 10
9 9 9
8 8 8
7 7 7
6| 6| 6|
<1 5 - b5 X i
4 B 4 4
s gan 3 K s K
Eleleloleolele]el Ell el elo]e]-] il o lelo]e]-]
R elefefelefeofe]] e lefefelefefe]] Ul lofefelo]ele]e]
1234i5678910 1234i5678910 1234i5678910
1 1 1
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