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3 Kinematic Neutron Imaging

Fast neutron directions and energies
constrained by double scatter geometry

Multimode capability includes
• Neutron enemy spectrum.
• Compton imagingf
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Challenges
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6_ Prospective Methods

Concept requires a method of determining two (or more) event locations
within a compact scintillator to sub-cm precision. X = (x, y, z, t)

1. Monolithic: Arrival positions and2.
times of isotropically emitted
photons at surfaces of the volume
determine most likely X.

Optically segmented: Constrain
photon propagation within bulk to
associate specific PD channels
with X.



7 I SVSC at AAP

Strong technical parallels to both prospective and
previously realized neutrino detectors
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8 I SVSC at AAP

Both teams are pursuing both component level characterization
and development as well as system level prototyping.



I9 Focusing on the Monolithic Case
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11 Can it work? (DR)
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12 Focusing on the Monolithic Case
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13  DRS4 waveform capture

• DRS4: 9-ch switched
capacitor array ASIC
5 GS/s, 950 MHz, 11.5
enob, 1024 samples

• Long readout time

PSI

DRS4 Evaluation Board V5
H3

• 4-channel DRS4
eval board (PSI)

• Not scalable
• Caen V1742
• 32-channel
• DRS4-based

2018-06-13 E. BRUBAKER, SNL/CA



SCEMA Module Directly Coupled to Planacon



15 I Establishing SCEMA Single Photon Performance
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16 Photodetectors

Photek PMT210

.:, • 1 cm MCP-PMT

• Gold standard

for timing

• Not scalable

•
Large Area Picosecond Photodetector

http://wwwincomusa.com/wp-content/uploads/2018/06/2018-06-27-
Large-Area-Picosecond-Photodetector-LAPPD-Pilot-Production-and-
Development-Status.pdf

Photonis Planacon

XP85012

• 25 mm pore

MCP-PMT

• 8x8 anode (6 mm)

Hamamatsu H8500 MAPMT

• Metal channel

multi-anode PMT

• 8x8 anode (6 mm)

2018-06-13 E. BRUBAKER, SNL/CA



LAPPD Mounted with moveable light source
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Single Point Results
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Single Point Results
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5

Outlook for LAPPD and other Photodetector Characterizations

Relative Occupancy
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21 Focusing on the Monolithic Case

Like iho
ator
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23 Focusing on the Monolithic Case
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Light Yield Measurements — LBNL/UCB Approach

New dTOF method developed at LBNL extends the indirect technique using
a high-flux tunable broad spectrum d-breakup neutron source

Broad
spectrum

neutrons

using double TOF

Proton energy determined 01

"PAO.
4111°

0-

'

I. 2

Proton Enemy f MeV1

• Higher flux = Shorter measurement times
• DT generator (commercial): <107 n/s/sr

• 88-lnch Cyclotron: >1011 n/s/sr at 0°
• Higher flux = More accurate measurements

• Smaller detectors and larger flight times

while maintaining reasonable event rates
• Multiple secondary detectors

• Increased statistics

• Same result from independent detectors

as systematic check

10 '

Each detector pair

results in a

continuous light
yield measurement

over a broad energy
range

10
Proton Energy [MeV]

Outcome: Enables accurate simulation of
advanced neutron detection systems,

neutron image reconstruction, and next-
gen detector materials prospecting



25 Prototypes For Both Concepts are Nearly Operational
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28 Pulse Pair Resolution Test Schematic
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(a) Schematic of the layout for the pulse pair resolution test



29 Pulse Pair Resolution Test Event Example
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(b) A characteristic event from the pulse pair test using a Photek
PMT-210 and a Photek LPG-405 ps class pulsed laser. The pulse
shape observed is a good approximation to the instrument re-
sponse function given the FWHM of PMT-210 pulse is 130ps.



30 Pulse Pair Resolution Test Result
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(c) Temporal distribution resulting from the accumulation of the
time difference of events. The standard deviation of is 21.7 ps
which is much lower than the anticipated single photon jitter of
the pixelated detectors under consideration


