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ABSTRACT

Current quantification of margin and uncertainty (QMU) guid-
ance lacks a consistent framework for communicating the
credibility of analysis results. Recent efforts at providing QMU
guidance have pushed for broadening the analyses support-
ing QMU results beyond extrapolative statistical models to in-
clude a more holistic picture of risk, including information gar-
nered from both experimental campaigns and computational
simulations. Credibility guidance would assist in the consider-
ation of belief-based aspects of an analysis. Such guidance
exists for presenting computational simulation-based analy-
ses and is under development for the integration of experi-
mental data into computational simulations (calibration or val-
idation), but is absent for the ultimate QMU product resulting
from experimental or computational analyses. A QMU cred-
ibility assessment framework comprised of five elements is
proposed: requirement definitions and quantity of interest se-
lection, data quality, model uncertainty, calibration/parameter
estimation, and validation. Through considering and report-
ing on these elements during a QMU analysis, the decision-
maker will receive a more complete description of the analysis
and be better positioned to understand the risks involved with
using the analysis to support a decision. A molten salt battery
application is used to demonstrate the proposed QMU credi-
bility framework.
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1 INTRODUCTION

The purpose of this paper is to describe the need for cred-
ibility guidance in quantification of margins and uncertainty
(QMU) analyses and provide a potential structure for such
guidance. Credibility is defined as "the quality or power of

inspiring belief"I I, so credibility guidance should assist in the

consideration of belief-based aspects of an analysis. A QMU
credibility assessment framework comprised of five elements
is proposed: requirement definitions and quantity of inter-
est (Qol) selection, data quality, model uncertainty, calibra-
tion/parameter estimation, and validation. Through consider-
ing and reporting relevant aspects of these elements during
a QMU analysis, the decision-maker will receive a more com-
plete description of the analysis and be better positioned to
understand the risks involved with using the analysis to sup-
port a decision.

This paper will be structured as follows. The remained of this
section (Section 1) will provide a history of QMU, motivation
for why a credibility assessment framework is needed, and
highlight similar efforts in the CompSim domain. Section 2
will outline the proposed framework for gathering and orga-
nizing QMU credibility evidence. How to use the evidence to
evaluate analysis credibility is then discussed in Section 3. A
demonstration of the process applied to a molten salt battery
example problem is provided in Section 4. Lastly, Section 5
provides a summary of the paper.

1.1 What is QMU

QMU originated at the national laboratories in the early 2000s
to address risk in nuclear weapon stockpile stewardship in

the absence of full system testing I 1. QMU was originally
posed as a risk assessment framework for nuclear weapons,
addressing the three elements of the risk triplet (what can oc-

cur? how likely is it? and what are the consequences?)I I;
this QMU formulation also included a fourth element, credi-
bility, defined as the answer to the question 'how much con-

fidence do we have in our risk assessment?' I 1. Historically
at Sandia National Laboratories (Sandia), QMU was largely
applied to experimental data-based problems, but it appears
likely that an integration of computational simulation (Comp-
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Sim) results and experimental data will be the paradigm of the
future. While processes for conducting QMU have developed

over time (e.g., 1), there are still no formal processes for
evaluating the credibility of a QMU analysis.

QMU entails comparing a performance measure to a perfor-
mance requirement to determine the likelihood of function-
ing as intended, considering all relevant uncertainties. Im-
plementing a QMU analysis requires building a team with the
relevant expertise; identifying performance measures and re-
quirements; assimilating relevant data; running an analysis;
and communicating the results. Considering these steps of a
QMU analysis, a corresponding QMU credibility assessment
should address many of the inherent aspects of the analysis
such as relevance of the performance measure and require-
ment, data quality, and analysis limitations.

1.2 Why Measure Credibility?

There is currently a gap in guidance within Sandia National
Laboratories (Sandia) for assessing the credibility of QMU
analyses. New guidance for QMU was recently released
as internal documents within Sandia in two sections: 1) an
overview of high-level QMU concepts and processes and 2)
descriptions of statistical tools that can be used to derive QMU
results, with a focus on QMU for experimental data. This
new guidance pushed for broadening the analyses supporting
QMU results beyond extrapolative statistical models and advo-
cated for a more holistic picture of risk, including information
garnered from both experimental and CompSim campaigns.
Although this new guidance improves the informational basis
of QMU analyses, it does not provide a consistent framework
for communicating the credibility of analysis results.

Credibility assessment guidance for QMU is needed because:

• Decision-makers are increasingly asking for credibil-
ity assessments when being provided analysis results.
Decision-makers are learning that they must understand
the level of confidence they should invest in the results to
better utilize the analysis that they commissioned.

• Failing to provide guidance for communicating credibil-
ity may lead to overconfidence in results. A question
that should be posed to QMU analysts is, "What is the
credibility of your results?" Without asking this question,
the decision-maker may believe results are more reliable
than is warranted and make ill-informed decisions.

• A unified QMU credibility framework would result in
greater consistency in information presentation. When
credibility results are analyst-specific and/or analysis-
specific, decision-makers will interpret results differently
depending on who conducted the analysis.

• Streamlined documentation of important auxiliary infor-
mation (e.g., metadata, methods) is integral to under-

standing and reproducing QMU results. Summary QMU
results (for example, margin over uncertainty ratios) al-
ways rely on auxiliary supporting information about the
QMU process and supporting experimental data.

Without a consistent credibility assessment framework,
decision-makers must rely on source credibility, or their be-
lief in the source of the information. Although not specific to
the reception of QMU results, psychological research has ex-
plored the role of source credibility in other information distri-
bution areas. Across the psychology literature, source cred-
ibility is typically attributed to a person providing a message.
Key aspects of source credibility include the source's trustwor-

thiness and expertise 1 ; to a lesser degree, composure, dy-

namism, sociability il and even accents of voices i 1. Chaiken
and Maheswaran (1994) found source credibility can affect de-
cisions in two ways: 1) by serving as a peripheral cue for sim-
ple acceptance or rejection of an argument, and 2) by biasing

the strength of the decision-maker's argument processing[ 1.

While biasing the belief in results based on the source is
potentially problematic in itself, Heesacker et al., (1983)
found that as source credibility increases, persuasion also

increases[ 1. They attribute this phenomenon to more cred-
ible sources eliciting greater thinking about the message (im-
proved information presentation, not informational content).

Across psychological research a theme persists: human judg-
ment is persuaded and biased by a variety of minute factors.
As humans participate in high stakes decision making, it is
important to understand how small changes in presentation of
the message (or data) can unintentionally bias the decision-
maker. To mitigate such bias, credibility frameworks may help
through providing consistency, transparency, and structure.

1.3 History of Credibility in CompSim

The concepts of credibility continue to be developed for pre-
senting CompSim results as evidence to support a decision as
well as for the incorporation of experimental data into Comp-
Sim analyses. Reviewing the progress of credibility guidance
for these fields provides a starting point for the analogous
guidance for QMU analyses.

For institutions that utilize CompSim to support decisions re-
garding complex engineering questions such as national lab-
oratories, the aerospace and defense industries, and space
agencies, the credibility associated with CompSim predictions
must be understood. Methods for assessing and communi-
cating the credibility of CompSim based evidence are being

developed by many organizations i 1. As an example, the

Predictive Capability Model Maturity (PCMM)[ 1 has been
developed at Sandia over the last decade to provide a con-
sistent framework for evaluating CompSim credibility. PCMM
was developed as a method of directing discussion about



and communication of the many assumptions, errors, biases,
and uncertainties ever present in CompSim predictions. A
broad spectrum of CompSim activities are covered by ele-
ments of PCMM including code verification, physics and ma-
terial model fidelity, representation and geometric fidelity, so-
lution verification, validation, and uncertainty quantification.
Those elements are perceived to encompass the majority of
error/uncertainty sources that may impact a CompSim analy-
sis. An approach for grading a simulation's performance in the
different elements is also provided, which includes guidance
describing the expected attributes needed to achieve a spe-
cific maturity level for each element. This grading is meant to
foster gap identification and resource allocation.

PCMM can be to be used as a results credibility communica-
tion tool as well as an initial analysis planning aid. Applications
using PCMM as a prediction credibility assessment tool have

been demonstrated [14, 15j.

In the CompSim community, experimental credibility is cur-
rently being developed from the perspective of using ex-

perimental data for model validation and calibrationI ,

Through providing structure for the assessment of experi-
ments used for CompSim and experimental integration ac-
tivities, consistency between modeling activities can be in-
creased. A common difficulty when comparing experimental
and CompSim results is ensuring that the scenarios captured
by each are similar enough to not be the cause of significant
discrepancy. When such discrepancies occur, it may be diffi-
cult to determine the source. Through capturing information
about the experimental setup from the perspective of how that
information will be used in CompSim analyses, more informa-
tion can be gained from the comparisons. This same frame-
work can be used to increase an experimental campaign's
value through incorporating knowledge about how the data will
be utilized into the test planning process. Outcomes of these
experimental credibility processes include characterization of
experimental uncertainties, assessment of model validation or
calibration quality, and assessment of experimental alignment
with modeling goals.

2 IMPORTANT ELEMENTS FOR QMU CREDIBILITY

Following the strategy for developing a credibility framework
laid out by the CompSim community, potential sources of er-
ror, uncertainty, bias, or assumptions that could impact a QMU
analysis are categorized into elements. It is proposed that
QMU credibility can be assessed using the following five ele-
ments.

QMU Credibility Elements

1. Requirement Definition and Qol Selection
Defining the requirement against which perfor-
mance is compared and selecting the appropri-

ate quantity of interest that can be used to rep-
resent performance

2. Data Quality
Evaluating the available data and its attributes

3. Model Uncertainty
Describing any models used to analyze the data
and associated assumptions

4. Calibration / Parameter Estimation
Considering how the model is fit or calibrated

5. Validation
Determining if the model is a sufficient repre-
sentation of the data with respect to making
the prediction of interest

The five elements are described in more detail in the subsec-
tions below. At the end of each element-specific section, sug-
gested documentation is provided that would support credibil-
ity statements for each element.

2.1 Requirement Definition and Qol Selection

Requirements may sometimes be clearly specified and the
mapping from available data to that requirement may be sim-
ple, but this is not strictly true. Requirements may need inter-
pretation that comes from consultation with a subject matter
expert or simply from the QMU analyst. Available data often
requires additional assumptions and/or processing to be com-
parable with the requirement. The quantity compared against
the requirement is referred to as the Qol. Qols are typically
physical quantities, while requirements may be functions of
these physical quantities. Determining how the requirement
and Qol definitions will be compared is a necessary step of a
QMU analysis.

Suggested documentation. What is the requirement? Are
there any perceived ambiguities in the requirement defini-
tions? What is the Qol? What is the relevance of the Qol
relative to the requirement?

2.2 Data Quality

A great deal of qualitative information lives with the dataset
that may impact the value of the dataset. Specifically, meta-
data about a dataset should be documented and preserved,
so that important information about the data-generating mech-
anism can be evaluated when the data are analyzed. Meta-
data may include:

• When was the data gathered?

• What method was used to capture the measurements?

• How well developed was the measurement/experimental
method?



• Where was the test conducted?

• Who conducted the test?

• What tester(s) was used?

• How well characterized are the experimental conditions?

Transparently evaluating metadata reduces the risk of omit-
ting information that may impact the conclusion of the anal-
ysis. The following four categories are common categories
of such auxiliary data (but should not be considered all-
encompassing).

1. Sparsity The amount of data available impacts how
much sampling uncertainty will exist in an estimate. Fur-
ther, some estimands require more data than others to
avoid extrapolative inferences; for instance, estimating a
mean typically requires much less data than estimating
an extreme percentile or rare exceedance probability to
avoid extrapolation. Issues with presenting distributional

tail extrapolation have been highlighted in I 1.

Suggested documentation. How much data is available?
Is the data sufficient to empirically validate any estimates
being made?

2. Representativeness The Qol often cannot be directly
measured given the available data. Therefore, the ana-
lyst must consider how the available data map onto the
Qol. For example, are we interested in environment A,
but only have data tested in a similar, but less stressing
environment B?

Suggested documentation. What is the representative-
ness of the data relative to the application space (includ-
ing tested environments, age, etc.), as defined by the
Qo I?

3. Noisiness / Measurement uncertainty Most measure-
ments contain some error. This error can arise from
many different sources. A common source of error is the
tester or instrument's measurement error. In addition, er-
rors can be introduced during data processing steps to
convert a signal captured by a measurement device to a
physical quantity. Uncertainty in the measurement can
also be injected into the data through uncertainty about
what is truly being measured. For example, measure-
ment devices may be placed in orientations and exposed
to boundary conditions that deviate from those specified
for the experiment.

Suggested documentation. What are the magnitudes
and hypothesized sources of the measurement errors?

4. Bad data / Outliers Rejection of bad (inaccurate) data
or non-physical outliers is an aspect of data analysis.
Omitting outliers is often acceptable, but only when the
root cause of the outlier is known. Understanding the
root cause of impactful outliers often requires investiga-
tion into manufacturing and/or measurement process.

Suggested documentation. How much data was rejected
(not included in the final analysis)? Why it was rejected?

2.3 Model Uncertainty

Models, whether physics-based or statistical, are an important
aspect of QMU analyses, particularly when data are sparse or
are not representative. Information about the types of models,
underlying assumptions, and additional uncertainties associ-
ated with modeling activities must be considered and commu-
nicated. If the model is purely physics-based, then existing

predictive maturity methods like PCCM[ 1 can be used to as-
sess the model credibility. If the model is empirical or statis-
tical, then the credibility for these types of models should be
evaluated, though we are not aware of any formal frameworks
for evaluating model credibility. Goodness-of-fit methods are

not sufficient metrics for evaluating model credibilityI 1, due
to only testing if the distribution form hypothesis can be re-
jected. A typical means of assessing a statistical model's pre-
diction capabilities is to demonstrate the model's ability to pre-
dict data not used to train the model. While such activities
may be used to support model validation (as will be address
later in Section 2.5), this does not probe the underlying model
uncertainties we deem to be essential to model credibility. We
recommend assessing two components of model credibility:
the causal structural and functional assumptions of the model.

1. Causal structural assumptions The inability to accu-
rately represent the collected data in the empirical model
will introduce bias in Qol estimates. Causal structural
assumptions concern whether causal or physics-based
relationships can be learned from the available data by
comparing how the data were generated to an underly-
ing causal model for the data. Specifically, causal anal-
ysis concerns establishing underlying causal relations
between variables and then determining if the collected
data are sufficient to infer the Qol under these causal re-
lations I 1. Common sources of bias include I 1:

• Omitted variable bias: important variables were not
measured in the dataset that should be included in
the model to accurately capture the physics in the
empirical model.

• Selection bias: the data are not a random sample
from the population, but the model assumes a ran-
dom sample.

Suggested documentation. Was the causal structure of
the model considered? Is the fitted model consistent with
an underlying causal model for the data? Is selection
or omitted variable bias present? To what fidelity is the
causal structure understood?

2. Functional assumptions Given a set of causal struc-
tural assumptions, statistical models are then specified to
represent the empirical relationship between the inputs



and outputs. Functional assumptions specify this rela-
tionship, conditioning on the set of causal assumptions.
Stated differently, causal assumptions pertain to whether
all of the necessary inputs are included in the model-
ing to address biases in the data; functional assump-
tions pertain to whether the empirical model is correct,
conditioning on having the correct inputs in the model.
Examples of functional assumptions include normality or
other distributional assumptions, linearity between inputs
and outputs, and no interaction between inputs on the
output, i.e., independence of effects. The complexity of
the selected model is often limited by the available data.
Further, the importance of the functional assumptions of-
ten varies. For instance, normality assumptions will of-
ten have minimal impact when estimating means, but
can have a significant impact on tail extrapolations, which
are common in reliability and QMU analyses. If multiple
model forms provide similar fits to the data, this model
form uncertainty should be considered.

Suggested documentation. What functional assumptions
were made? Were the assumptions tested empirically,
based on subject matter data, or required due to lack
of data? To what fidelity are the functional relationships
understood? How sensitive is the Qol estimate to the
functional assumptions?

2.4 Calibration / Parameter Estimation

The act of updating model parameters using data (including
both estimating and quantifying uncertainty in the parame-
ters) is called calibration when models are physics-based and
parameter estimation when models are empirical/statistical.
These definitions are not universally accepted, but will be
used within this framework. When data are sparse, calibra-
tion and statistical estimation procedures can perform poorly
(e.g., maximum likelihood, bootstrapping), and limitations to
calibration procedures should be addressed. Bayesian cali-
bration processes incorporate additional knowledge into pa-
rameter estimates in the form of prior distributions. When
using Bayesian techniques, the sensitivity of the calibration
result to the prior should be considered and acknowledged if
significant.

Additionally, not all calibration parameters are equally impor-
tant to consider; specifically, the degree of consideration paid
to an updated parameter should scale with the model's sen-
sitivity to that parameter. Model sensitivity analysis typically
refers to evaluating the magnitude of change in a prediction
caused by changes to an input parameter's value.

Suggested documentation. What is the accuracy of the se-
lected calibration/estimation procedure for important model
parameters in the application? Was additional information in-
corporated into the parameter estimates? What is the sensi-
tivity to updated and non-updated parameters?

2.5 Validation

Once the dataset is understood, the model selected, and the
model fit to best represent the data, the model's validity should
be judged with regards to the prediction of interest (quantity
deemed comparable to requirement). Comparing model pre-
dictions with experimental data allows for the model's predic-
tive capability, in regards to the prediction quantities of inter-
est, to be quantitatively assessed. Model validation should oc-

cur when using physical-based models or statistical models[ I.
Model validation has become a major area of emphasis in the

CompSim domain[ 1, and is well developed for statisti-

cal cross-validation of models[ 1. It should be noted
that validation cannot prove a model's predictive capability,
only provide supporting evidence. If data sufficiently rele-
vant to the requirement was available, then this data would
be used to make the QMU assessment, and models would
not be needed.

Suggested documentation. How well does the model predict
the available data? Can the model be compared to an 'exter-
nal test set; i.e., data that were not used to build or calibrate
the model? If so, what is the fidelity of the validation data? Are
the model predictions consistent with subject matter knowl-
edge? How relevant to the requirement is the validation?

3 EVALUATING CREDIBILITY

Once these elements of credibility have been evaluated, then
these elements can be assimilated to provide an overall as-
sessment of credibility. Each of the five elements should un-
dergo a peer review of the analysis decisions and documen-
tation of those decisions so that the analysis can be fully un-
derstood at a later date. Both peer review and documentation

are also included in the aforementioned experimental[ 1 and

CompSim credibility approachesI 1. When presenting QMU
results to a decision-maker, overviews of these five elements
should be included in order to allow the decision-maker to bet-
ter understand the value of information contained.

Whether to develop a quantitative scale for scoring analy-
sis credibility remains an open question. Many 'predictive
maturity' frameworks assign numeric scores to sub-elements
and combine the sub-scores to create an overall score. For
instance, in PCMM, sub-elements are assigned an ordinal
score from 0 to 3, and the PCMM authors suggest methods
for combining sub-element scores into a single overall score,
though advise against this collapsing of information due to in-

terpretability issues I 1. Zeng et al., (2017) score the 'trust-
worthiness' of methods using a decision model based on the

analytic hierarchy processI 1. Hemez et al., (2010) devel-
oped a predictive maturity index, emphasizing the need to go
beyond goodness of fit and consider a more wholistic picture
of credibility when evaluating the predictive maturity of model-

ing and simulation based resultsI 1.



We do not score credibility herein, instead favoring a more
qualitative synopsis of the credibility supporting evidence. Fol-

lowing I 1, we argue that there is not a natural 'weighting' of
the subelements that can produce a meaningful overall score.
Further, our experience suggests that quantitative scoring can
become highly politicized and arbitrary. When presenting
credibility results, we recommend that, instead of collapsing
information into a quantitative score, information should be
collapsed into a set of key points. Specifically, the sensitiv-
ity of the QMU predictions to the model assumptions should
be qualitatively or quantitatively assessed. Elements with par-
ticularly low credibility and potentially high impact should be

highlighted. In areas of concern, sensitivity studies I i can
be conducted to determine the potential quantitative impact of
an assumption. If the Qol results hinge on assumptions that
are highly uncertain, then the analysis naturally lacks credibil-
ity.

4 EXAMPLE APPLICATION

To demonstrate our concept of QMU credibility, the pro-
posed framework is applied to a simulated molten-salt bat-
tery dataset. The example is meant to resemble a real-world
equivalent that could be generated from a production facil-
ity. Conditions varied within the dataset are the environmental
temperature (-35°C to 65°C ), intensity of the current load-
ing profile (characterized as varying intensities between 0 and
1), and production lot number (1 through 7). Typical means
of visualizing this dataset against a requirement are shown
in Figure 1. The performance requirement specified for this
dataset is for the baseline voltage to remain above 30 volts for
a specified time. The dataset is comprised of observed base-
line voltages at the required time. Examination of the plots
would seem to show that the requirement would be met, but it
is also difficult to know how useful the information provide is in
answering the question "what is the margin to the requirement
and what are the associated uncertainties in that estimate?"

In order to better answer this margin and uncertainty question,
suggested documentation from the proposed QMU credibility
assessment framework when applied to the molten salt bat-
tery example is now provided.

4.1 Requirement Definition and Qol Selection

Requirement: Once activated, 99.5% of batteries must main-
tain a baseline voltage above 30 volts for YY seconds.
Qol: Predict the baseline voltage at the requirement time, in
the battery population at their harshest temperature and load-
ing conditions at end of life.
Rationale: The requirement must be met in the current battery
stockpile for all application environments. Therefore, environ-
ments that impact battery voltage, such as temperature, load-
ing profile, and age, must be considered.
Uncertainties: The Qol is defined at the worst-case load and
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FIGURE 1: Raw battery performance data (500 samples)
available for comparison to requirement. The top figure shows
data's battery performance measure as a frequency density,
where the three subpopulations come from the three testing
temperatures. A cumulative complementary density function
of the same performance measure is shown in the second plot
as an example of another common method of visualizing QMU
datasets.

temperature, but the requirement is ambiguous about those
effects. It is improbable that the battery will ever experience
these environmental extremes in use-environments. There-
fore, predictions to the worst-case setting may be too conser-
vative and sensitivity studies should explore the impact of this
conservatism. The requirement specifies a 0.995 reliability,
so variability in the battery population must be considered to
reach comparable terms.

4.2 Data Quality

Metadata / Source: The data was gathered during production
15 years ago and captured using 2 high quality testers by 3 op-
erators (equally distributed). The measurement method was



developed during battery design process.
Uncertainty: Uncertainty in the data primarily stems from the
lack of representativeness. Individual sources of uncertainty
are detailed below.
Sparsity: 500 units were tested at different environmental con-
ditions. The quantity of data was deemed sufficient, but may
require extrapolation from a statistical model to characterize
tail behavior and estimate the percentile of interest and corre-
sponding uncertainty.
Representativeness: Tested units were randomly sampled
from all produced units and are therefore representative of all
production lots. Tested units span the full temperature and
loading conditions of interest, but were tested immediately af-
ter production and therefore do not provide any information
about battery aging.
Noisiness / Measurement uncertainty: Loading and voltage
measurements are sufficiently precise. Experimental temper-
ature conditions are within +0.5°C. Unit to unit variability is
expected due to manufacturing tolerances of components, but
will need to be characterized.
Bad data / Outliers: No outliers found.

4.3 Model Uncertainty

Type of model: For this dataset a statistical model is used, so
causal and functional assumptions can be assessed.
Causal structural assumptions: An underlying causal model
for the molten-salt battery system was elicited from experts
and shown below in a causal network format.

age=0 lot

FIGURE 2: Causal network for molten salt battery. Boxes
indicate observed variables. In causal language the boxes
would be known as interventions due to those variable values
being manipulable for a single battery test. Age is believed to
potentially have a causal relationship with the Qol (Y, voltage),
but is always 0 in the available data.

Age, temperature, loading conditions, and manufacturing lot
number are all covariates that have a causal relationship with
voltage. This causal structure assumes that the covariates are
not confounders (no association between inputs).

To estimate the Qol (the voltage at the worst-case temperature
and load) using the data, we define the Qol of interest as:

YQ (lot) = (17 lage, load, ternp,lot)

YQ = (Ylage,load,ternp)

= f YQ (lot)P(lot)dlot

An omitted variable bias exists, because all production data
was collected on un-aged batteries. Expert judgement can be
leveraged to determine the potential impact of this bias. To
estimate the Qol, we assume:

YQ (lot) = (Y age = 0, load,ternp,lot)+ SA

where SA is an additive shift due to age that is elicited from
experts or an auxiliary source of information.

Selection bias may also be present in the dataset due to
a great number (---'60%) of the samples coming from room
temperature tests versus the tests at temperature extremes
(,--:-.20% each). Because we condition on temperature in the
Qol, this selection bias should not impact the ability to make
inference about the Qol, though it does increase the variance
of the estimated effect of temperature on voltage.

Functional assumptions: To model KA/00, a linear model is
assumed to be an appropriate method of representing the
input-output relationships:

iots
YQ (lot) = ao x temp. + al x load + ai+J(i = lot) + E

i=1

N(0, a2)

This model assumes linear relationships between the input
parameters and output; and assumes that interactions be-
tween parameters are insignificant. Further, residual variabil-
ity due to manufacturing tolerances is modeled using an nor-
mal distribution. Because age = 0 in the dataset, age-effects
cannot be estimated in the fitted statistical model.

4.4 Calibration / Parameter Estimation

Parameter estimation procedure: Ordinary least-squares
(OLS) minimization is used to fit the statistical model. Be-
cause the sample size is large (Th = 500) and model is simple,
there are no meaningful uncertainties associated with the pa-
rameter estimation procedure. Fit results are shown below
with standard errors and manufacturing variability captured as
the model residual.

TABLE 1: OLS model parameter fits and standard errors.

parameter OLS fit std. err.

ao 0.067 9.9E-5
al -0.784 0.013
az 36.48 0.012

a3 36.56 0.014

a4 36.60 0.013
a5 36.63 0.014

a6 36.57 0.013
a7 36.63 0.013

a8 36.71 0.012
a 0.0734



Parameter sensitivities: Variability due to lot number is found
through the calibration, but the major model sensitivities are
due to the load and temperature. Sensitivity to aging cannot
be inferred from the data, leaving an unknown in the analysis.

4.5 Validation

Prediction performance: With ample data the functional as-
sumptions of linearity and no interaction can be evaluated
from the data, as shown in Figure 3. Comparing the data fit

41 -

c 40 -

0- 38 -

37 -
E

o 36 -
12 35 -
22
.E 34 -

33 -

34 36 38 40

linear model prediction

FIGURE 3: Validating linear assumption by comparing an
OLS fit containing no-interaction terms to one with first order
interactions.

of the model without any interactions to one with all possible
interactions demonstrates that no improvement in fit occurred.

Prediction assessment: The model's predictions are consis-
tent with behaviors anticipated by subject matter experts. The
normal-residuals assumption can be empirically checked for
inaccuracy. However, because we are using the model to pre-
dict a 99.5th percentile from data collected at multiple loads
and temperatures, we cannot directly confirm this assumption
for the temperature/load condition where we are predicting (50
out of 500 samples were at the worst-case conditions).

4.6 Summary of credibility assessment

Key assumptions that were identified include: relevance of the
Qol, normality of the residuals, and no battery aging. Sen-
sitivity studies can be conducted to evaluate the impact of
these assumptions. For instance, worst case temperature (-
35°C) and loading conditions (1) have been assumed for the
Qol. Figure 4 compares the calibrated model's prediction bat-
tery performance uniformly sampled across all conditions of

interest with the predictions only for the worst case scenario,
demonstrating how this Qol assumption significant impacts on
our QMU conclusions. Model predictions for the worst-case
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FIGURE 4: Illustration of potential Qol bias from using most
strenuous conditions to define performance, as compared to
general population. Shaded regions show 95% confidence
intervals.

scenario are still a distribution, due to including lot and unit-to-
unit variability. Comparing the worst-case distribution with the
full potential distribution shows the degree of conservatism be-
ing added to the analysis. Experts may also have some knowl-
edge about the appropriateness of a normal approximation to
represent unit to unit variability in battery performance; to elicit
such information, analysts can inquire about subpopulations
or non-linearities in manufacturing tolerances that would result
in a multi-modal, skewed, or heavy tailed distribution. Subject
matter experts can be consulted to determine the impact of
age on voltage over time, resulting in sensitivity information
such as: aging will reduce the performance in a linear man-
ner by at worst 3 volts by the end of lifetime of the battery
population.

In order to estimate the 99.51h percentile of the battery pop-
ulation at the worst case conditions, extrapolation using the
model is needed due to only limited data available for those
conditions. Figure 5 illustrates both the sensitivity to aging and
the extent of extrapolation through plotting the experimental

data and model predictions in terms of return levell 1. Re-
turn level is 1—percenttle' • for instance, a return-level of 200
can be interpreted as the average number of units neces-
sary to detect 1 failure (or, similarly, to inform a 0.995 relia-

bility requirement)[ 1. While the raw data trend and model
predictions for the worst-case temperature and loading condi-
tions show significant margin (-3.25 V) with minimal uncer-
tainty (-0.14 V), when the worst case aging impact is con-
sidering, the margin becomes small (-0.25 V). Here margin
is defined as the distance from the model's mean estimate
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of the 99.5th percentile and uncertainty is distance from the
mean 99.5th percentile estimate to the lower 95% confidence
interval bound. With such a small margin, the results have an
increased sensitivity to the assumptions used to extrapolate
with the model. Where the uncertainty in the margin predic-
tion was insignificant when age effects were neglected, it be-
comes potentially significant once that effect is considered. In
a standard QMU analysis, the potential impact of an unquan-
tified variable like age would likely not be presented.

5 SUMMARY

Following the recent revamping of the QMU process at San-
dia and current emphasis on prediction credibility, guidance
for assessing the credibility of QMU analyses is needed. Di-
rection for how to communicate credibility of CompSim and ex-
perimental gathering campaigns (designed to support Comp-
Sim analysis) is already being developed. The future QMU
paradigm will likely look more like experimentally supported
CompSim than the historic model that was largely experimen-
tal based. With this change in QMU paradigm comes the need
to provide credibility evidence with any QMU result. Five el-
ements have been proposed as the basis for QMU credibility
assessment framework: requirement definition and Qol selec-
tion, data quality, model uncertainty, calibration/parameter es-
timation, and validation. Through considering those elements
and proposed subelements, documentation and communica-
tion of such information should be included in the communi-
cation of any QMU results. With this information the decision-
maker receives a greater appreciation of the assumptions that

went into generating the results as well understanding of the
utility of the information provided. The application of this QMU
credibility framework has been demonstrated on a molten-salt
battery dataset.
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