Predicting Fragment
Aerodynamic Drag with Deep
Learning

Peter D. Yeh




2

Understanding range of fragment flight

Explosive fragments fly at supersonic speeds

Current methods assume single drag coefficient

Geometry is complicated, high aspect ratio

Fragment-air interaction leads to tumbling and
chaotic motion

Goal is to characterize range of a set of
flying fragments
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31 Previously developed fragment flight simulation procedure
1) Compute aerodynamic coetficients at all orientations with high fidelity solver.
2) Compute trajectories with rigid body integration.
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An explosive may generate over 10,000 fragments. Simulating all of them is

prohibitively expensive!
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How can we speed up aerodynamic calculation? Deep Learning!

Lid driven cavity solution approximated
using Deep Learning (Stanford, 2017)

Used Generative Adversarial Networks
(GANSs), adapted pix2pix algorithm

Achieved orders of magnitude speed-up
in inference time

Approximating aerodynamics using
deep learning shows potential
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Farimani, Gomes, Pande 2017




Generative Adversarial Networks: a game theoretic approach to
machine learning

Generative Adversarial Networks (GANSs) pit two competing neural networks
against each other

> The generator, tries to mimic real results

° The discriminator, tries to identify mimicked results from real results

Loss function dictates solution convergence

ake image

https://skymind.ai/wiki/generative-adversarial-network-gan

Two networks enter, One network leaves




Generative Adversarial Networks (GANs) learn to mimic ‘%
s I complex systems with wide applicability

Synthesized image

High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs (2018)




71 Our first attempt at using a GAN for flow prediction

Train pix2pix GAN using computed flow solutions as ground truth
> Simulated 1000 rectangles with random orientations & aspect ratios, Mach 5 external flow
° 900 training examples, 100 held out test examples

> Pressure fields calculated with compressible Euler equation solver (CE Solver)

> Ideal gas assumption for simplicity

pix2pix GAN
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GAN-generated solutions look promising

Training Iteration 1 — Training Iteration 200

¢GAN Learning
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Absolute error from CE Solver
15 decreases over training time
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training L1 loss
(rolling average over normalized values)
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training iterations

Generator improves over time eventually producing visually accurate pressure maps




9 ‘ Can you tell which flow field is generated by a GAN!?

Pressure x Velocity




10 I Can you tell which flow field is generated by a GAN!?

Pressure x Velocity

CE Solver

ML

GAN successfully generates visually accurate flow approximations
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Predicted pressure is close on leading edge, but drag is
inaccurate

CE Solver

GAN successfully approximates the
pressure map along the leading edge

(left) of the object

Larger error behind the object due to
unsteady wake and fluctuating lower
pressure

Inaccurate drag calculation despite
close values in pressure

Pressure Abs. Difference Pressure Percent Difference
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Improvement |:Add physics loss term to loss function

GAN Loss +
CE Solver GAN Loss Physics Loss

4

Enforce momentum and mass
conservation in generator

Punishes model for violating
physics constraints

Improved accuracy in
pressure field prediction
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Improvement 2: Include force loss term in loss function

Compute Drag, Lift, & Torque
> We take the gradient of the object to get the surface normal

> Using predicted pressure field and the surface normal, we calculate
the forces on fragment

> GPUs make this a very fast calculation

Penalize model if computed drag, lift, and torque differs from
CE Solution

Total loss function is a sum of GAN loss, physics loss, and
force loss

° Physics-informed model

drag = LPn,
lift = XPn,
torque = XPr X n

Normal to object




Successful Deep Learning prediction of fragment aerodynamic
14 | forces

Total Loss = GAN Loss + weights * Physics Loss + weights * Force Loss

Appropriate adjustment of weights leads to successful predictive model

Mean Relative
Error vs CE Solver

1.87%
5.63%
2.29%

ML predictions approximate CE solver results within 6%
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Conclusion and Future Work

Original goal: fast approximation of fragment drag

Demonstrated a strategy for deep learning
aerodynamic drag

° 2D rectangles
> Physics-informed model

> Generalization and extension to 3D in progress

Limitation: ML model is only as good as its
training data

CE Solver ML
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