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2 I Motivation

Structural alloy used in engineering applications come in
various product forms

Rolled plate

Forged

Sheet

Additively Manufactured (AM)

Worked alloys result in anisotropic plastic response and
can have significant performance departures from
isotropic and/or annealed material

Particularly in terms of localization and failure

Creates calibration challenges

This work is an exploration of the relative importance of
using anisotropic yield strength for two structural alloys

Case study 1: Ti-6A1-4V - quastistatic and dynamic
loading (SFC2)

Case study 2: AM SS317L - quasistatic loading (SFC3)
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A single specimen failed with All others failed B-D-E-A
Path A-C-F

Caused by sample defects.
Out-of-plane warpage.
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3  Case Study: Sandia Fracture Challenge 2
Where will the failure occur?
• 2 teams predicted wrong failure path or could

not decide
• 4 teams predicted B-D-E-A or A-C-F as

possible failure paths
• 9 teams predicted B-D-E-A as only failure

path

How did it fail?
• Most teams predict unstable crack growth
• 2 did not
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I Case Study: Sandia Fracture Challenge 2
Including anisotropy

Shear data is not captured by
isotropic yield surface

-13% overprediction

Lacking an anisotropic model
a region experiencing shear
used a lower strength
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6 I Case Study: Sandia Fracture Challenge 2

EV damage model
3 1 — (1 — 0)771+1- [2(2m — 1) (14)
2  (1 0)m sinh  2m + 1 J2

[27
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• 
o experiments
• EV blind

HP Damage blind
• HP Damage revisited
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7 I Case Study: Sandia Fracture Challenge 2

J2 model

o
HP Damage

model

Lessons learned from this modeling exercise

Isotropic yield, even with rate and temperature
dependence produced an incorrect fracture path

Looking at rate and temperature independent
anisotropic yield (Hill) improved localization
location predictions

Sensitivity studies demonstrate importance of
temperature, damage models

Need anisotropy AND rate dependence AND
damage AND temperature dependence!!



8 I Case Study: Sandia Fracture Challenge 3
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9 I SFC3: Tension data
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10 I SFC3: Tension data
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• Lower yield strength
• More variable strain-to-failure

Hypotheses
• Grain size/morphology
• Texture
• Defect size/morphology
• Residual stresses
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I SFC3: Tension data
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• Geometric variability, surface defects/voids

• Explicit representation of geometries

• Inclusion of surface defects

• Void nucleation, growth
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SFC3: Modeling assumptions and calibration

Plasticity calibration
(SFC2)
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With 18 unknown parameters, calibrate using an iterative
approach with increasing complexity :
(1) rate dependence (2) hardening (3) anisotropy (4) damage



SFC3: Calibration Process for Flow

Rate-dependent anisotropic plasticity
model with power-law hardening
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SFC3: Material variability from damage

Significant variability exists in displacement-to-failure. Where does this come from?
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i9 I SFC3: Material variability from damage

Hypothesis 1: constitutive model Hypothesis L: explicit modeling of defects
can account for observed variability required to accurately capture variability
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Conclusion: Damage field changes fracture
surface, but not displacement-to-failure



20 I SFC3: Material variability form damage

hypothesis 1: constitutive moaei Hypothesis 2: explicit modeling of defects
can account for observed variabilit required to accurately capture variability
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2i I SFC3: Model for damage nucleation/evolution
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22 SFC3: Assessing structural variability/uncertainty

Geometric variability plays a
significant role in uncertainty in
the structural performance
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2 3 I SFC3: Comparison and uncertainty
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Take away message:
• Geometric fluctuations in these AM

specimens are a major contributor
to variability

• Just as important as material
variability (if not more so)

• Having robust and accurate models
of anisotropic behavior facilitate
these studies and conclusions

Global trends in experimental
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2, I Assessing material variability/uncertainty
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281 SFC3: Defect effect
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„ I Characterization of AM 3 I 6L (Notched tension)

Notched data provided to
calibrate crack initiation and
propagation. We employed
notches to check flow and
fit damage evolution.
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30 I Accounting for material and structural variability

The Kolmogorov-Smirnov test statistic was used
to obtain optimal downsampled subsets

5 parameters selected from each parameter set 

Yield strengths for each smooth tension experiment
Initial damages for each notched tension experiment
Principal components for each challenge geometry
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3i I Accounting for Geometric Variability
Significant correlations were found between
a number of the quantities of interest. To
reduce the data by eliminating redundancy
in the sampled specimens, apply principal
component analysis to output data

Data matrix X (36 specimens, 21 variables)
Xij: i-th measurement of j-th variable

Correlation matrix C (21 x 21)

C = 
n —

1 

1 
XT •X

Set threshold of pc, and keep n,
of the largest principal components Skk,

such that
nc

Skk Pc
i=1

The Kolmogorov-Smirnov test statistic used
to obtain an optimal reduced set of
specimens

Dn,m, = suplFtn(x) — F2,m(x)1

quantifies similarity of Ftn(x) and F2,m(x) of
two samples of size n and m, respectively

Out ut Correlations

Output Variable

PCA Cutoff

n 10
First n Principal Cornponents

Downsampled vs Full Sample CDFs

20

Compute Dn*,m, for m = 5 and pick a
reduced set of inputs that best represent
the full sample

Al , Al 1 , A20, A27, A28



Sensitivity to uncertain parameters
thermal parameter, void growth damage, m
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