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Motivation

SFC2 - Ti-6Al-4V

Structural alloy used in engineering applications come in
various product forms

* Rolled plate

* Forged

* Sheet

* Additively Manufactured (AM)

Worked alloys result in anisotropic plastic response and
can have significant performance departures from
isotropic and/or annealed material

* Particularly in terms of localization and failure
* Creates calibration challenges

This work is an exploration of the relative importance of
using anisotropic yield strength for two structural alloys

150 view oF
SECT. B-B
(SCALE: X:1)

* (Case study 1: Ti-6Al-4V - quastistatic and dynamic
loading (SFC2)

* Case study 2: AM SS317L - quasistatic loading (SFC3)
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;1 Case Study: Sandia Fracture Challenge 2

Where will the failure occur?

= 2 teams predicted wrong failure path or could
not decide

= 4 teams predicted B-D-E-A or A-C-F as
possible failure paths

= 9 teams predicted B-D-E-A as only failure
path

How did it fail?
» Most teams predict unstable crack growth

A single specimen failed with  All others failed B-D-E-A
Path A-C-F 1

= 2did not
Caused by sample defects.
Out-of-plane warpage. —
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;| Case Study: Sandia Fracture Challenge 2

Including anisotropy

Shear data is not captured by
isotropic yield surface

Triaxiality
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~13% overprediction

Lacking an anisotropic model
a region experiencing shear
used a lower strength
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- | Case Study: Sandia Fracture Challenge 2

EV damage model + Hill yield surface = HP Damage
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.1 Case Study: Sandia Fracture Challenge 2

- ﬁ

* Lessons learned from this modeling exercise

* Isotropic yield, even with rate and temperature
dependence produced an incorrect fracture path

* Looking at rate and temperature independent

anisotropic yield (Hill) improved localization
location predictions
* Sensitivity studies demonstrate importance of
temperature, damage models
J, model HP Damage * Need anisotropy AND rate dependence AND

model/ damage AND temperature dependence!!
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Case Study: Sandia Fracture Challenge 3

* Additively Manufacture 316L

| SECTION B-B

ISO VIEW OF
SECT. B-B
(SCALE: 3:1)
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Engineering Stress (MPa)

. ‘ SFC3: Tension data
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10‘ SFC3: Tension data
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i ‘ SFC3: Tension data
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» 1 SFC3: Modeling assumptions and calibration

rate dependence
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Modeling methodologies
= Temperature and rate dependent plasticity
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14‘ SFC3: Modeling assumptions and calibration
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= Geometric variability, surface defects/voids
= Explicit representation of geometries
= Inclusion of surface defects

= Void nucleation, growth




s 1 SFC3: Modeling assumptions and calibration
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16‘ SFC3: Modeling assumptions and calibration
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Modeling methodologies

= Temperature and rate dependent plasticity

= Plastic anisotropy

Initial guess
& data

Optimization Algorithm

(e.g. least squares, pattern search)

Loop over the simulation until objective

> function, F(x), is minimized
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approach with increasing complexity :
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17‘ SFC3: Calibration Process for Flow

Rate-dependent anisotropic plasticity Rate-dependence fit from challenge tests and literature data
model with power-law hardening 500
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« | SFC3: Material variability from damage

Significant variability exists in displacement-to-failure. Where does this come from?
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can account for observed variability required to accurately capture variability




s | SFC3: Material variability from damage

Hypothesis 1: constitutive model
can account for observed variability
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Conclusion: Damage field changes fracture
surface, but not displacement-to-failure




zo‘ SFC3: Material variability form damage e

Hypothesis 2: explicit modeling of defects
required to accurately capture variability
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Conclusion: Yes. Internal defects cause
marginal change, surface defects dominate




» 1 SFC3: Model for damage nucleation/evolution

* Calibrated to uniaxial and notched specimens with largest displacements
* Attributed variability in failure displacements in uniaxial tension tests to
surface defects introduced by AM.
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22‘ SFC3: Assessing structural variability/uncertainty

Force vs. Displacement
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23‘ SFC3: Comparison and uncertainty
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0.0 0.5 1.0 1.5
Displacement (mm)

Take away message:

Geometric fluctuations in these AM
specimens are a major contributor
to variability

Just as important as material
variability (if not more so)

Having robust and accurate models
of anisotropic behavior facilitate
these studies and conclusions
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» | Assessing material variability/uncertainty

Calibrate material model for each specimen
individually to obtain parameter variability
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28‘ SFC3: Defect effect
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29‘ Characterization of AM 316L (Notched tension)

Notched data provided to
calibrate crack initiation and
propagation. We employed
notches to check flow and
fit damage evolution.
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» | Accounting for material and structural variability

The Kolmogorov-Smirnov test statistic was used
to obtain optimal downsampled subsets

5 parameters selected from each parameter set

* Yield strengths for each smooth tension experiment
+ Initial damages for each notched tension experiment
* Principal components for each challenge geometry
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x| Accounting for Geometric Variability

Significant correlations were found between
a number of the quantities of interest. To
reduce the data by eliminating redundancy
in the sampled specimens, apply principal
component analysis to output data

Data matrix X (36 specimens, 21 variables)
X;j: i-th measurement of j-th variable

Correlation matrix C (21 x 21)
C= xT.x
n—1

Set threshold of p., and keep n,
of the largest principal components Sy,
such that

i=1
The Kolmogorov-Smirnov test statistic used
to obtain an optimal reduced set of
specimens

Dym = Sl;p|F1,n(x) - Fz,m(x)|

quantifies similarity of F; ,,(x) and F,,,(x) of
two samples of size n and m, respectively
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Sensitivity to uncertain parameters
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