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Introduction and Motivation
• As the PV industry expands and matures there has been growing

interest in predicting reliability and system lifetime

• Sandia's work to address this need is part of the Durable Module
Materials Consortium (DuraMAT), a Department of Energy (DOE)
Energy Materials Network (EMN)

• This work is part of an ongoing predictive modeling effort
developing multi-scale thermal-mechanical finite element models to
better understand how module deployment environments induce the
damaging stresses that lead to module degradation (below)
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• The viscoelastic nature of polymer encapsulants is suspected to be a
key factor affecting component stress states, and further
experimental characterization was needed to populate a representative
constitutive model
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• The polymer layers used as encapsulants in both crystalline silicon
and thin film PV modules provide:

■ protection from moisture and particulates

■ efficient optical transmittance of UV light

■ mechanical stability between glass and electronic components

• The two most common materials in commercial use are ethylene
vinyl acetate (EVA) and polyolefin elastomer (POE) films

• Films produced for the PV industry include proprietary copolymer
formulations and additives such as UV blockers, UV stabilizers, and
peroxide crosslinking agents

Thermal-Mechanical Finite Element Modeling
• Module-scale modeling has focused on

three commercial module designs validated
against loaded deflection data (right)

• A cell-scale parametric study was
conducted to correlate geometric and
material inputs with cell-level stresses
IJY Hartley et al. IEEE PVSC, 2018]

• The above efforts relied on single temperature and frequency moduli for
encapsulant materials, missing the viscoelastic behavior of these polymers
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Recreating Manufacturing Lamination Process

• During manufacturing, the module layers are pressed between heated platens while
under vacuum to promote flow into voids, adhesion between layers, and
crosslinking in systems using EVA

• Free standing samples were produced by mimicking above process in a vacuum
oven with PTFE-coated release fabric on each side of the encapsulant film. Degree
of crosslinking (kft) measured by DSC matches tech. datasheet guideline plot (right)

Crosslinking extent of reaction in EVA films measured

via DSC
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Thermal Transitions

• Dynamic mechanical analysis was performed on a Netzsch DMA 242 Artemis
instrument in the tension configuration and differential scanning calorimetry (DSC)
was performed on a TA Instruments Q200

■ Key thermal transitions are seen in EVA and POE with both experimental methods

Thermal transitions in crosslinked EVA films
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Thermal transitions in laminated POE films
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Time Temperature Superposition

• Isothermal frequency sweeps (0.1 Hz to 10 Hz) were collected at and
above the materials' glass transition regions (EVA: -40°C, POE: -60°C)

• Williams-Landel-Ferry (WLF) equation was used to find shift factors (ocT),
with parameters C1 and C2 optimized to storage modulus (E) data

• In future work, a Maxwell Model will be used to fit each master curve
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• Validity of time-temperature shift verified with loss modulus (E") data
shifted with above parameters. POE data show some scatter at high temps
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Additional Factors Affecting Viscoelasticity

• We have observed crystallization/melting behavior in DSC and DMA that
is likely occurring in polyethylene domains

• Manufacturers are motivated to shorten lamination step, resulting in
incomplete crosslinking. Crosslinking may continue slowly under field
conditions

• Multiple chemical degradation mechanisms due to thermal and UV
exposure have been proposed [MCC Oliveira, J. RSER, 2017]

• Future work will evaluate methods to include these effects into Sandia's
Universal Polymer Model

• Demonstrated with curing kinetics in polymer foams [DB Adolf and
RS Chambers, J. Rheology, 2007]
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