This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. ” I
S

0

AND2018- 13126C s

Early Experience with NVSHMEM
Extending the Kokkos Programming Model with PGAS Semantics

Christian Troftt

Sandia National Laboratories

www.github.com/kokkos

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

(C‘) =

eEXASCALE EQMF’UTEN\E PROJECT

20 %, U.S. DEPARTMENT OF

ENERGY |

| Office of
| Science

NIYSE

SAND2018-XXXX PE



”
Why PGAS Models May Now Work L kokkos

* Networks become more memory fabric like

 Hierarchical system designs with “SuperNodes”
— Summit: 6GPUs per Node less than 5000 Nodes for full machine

e DGX2: 16 GPUs interconnected with 300GB/s NVLINK
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The Kokkos EcoSystem Lkokkos
e

Science and Engineering Applications
Kokkos E chilil

Tools

Trilinos

Kokkos EcoSystem
Kokkos Kernels

Kokkos Core

[Kokkos Remote Spaces

Multi-Core Many-Coré CPU + GPU
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Kokkos Users DOE w kokkos

« We don’t actually know who all is using (or trying) Kokkos.
« Labs included: SNL, ORNL, LANL, PNNL, NREL, LBL, ANL. Partial ECP Project List:

Application __[State | Software Technology [State ____

SNL ATDM Apps Base Code (SPARC, EMPIRE, SNL ATDM PMR This is Kokkos ;-)

Nimble, SPARTA, ... ) LANL ATDM PMR Experimenting
LANL ATDM Apps In Parts KokkosSupport
EXAALT Base Code SNL ATDM DevTools  Base Code (in parts)
QMCPack Evaluation ExaPapi Integration with KokkosTools
ExaWind Base Code SNL ATDM Math BaseCode
ExaAM Experimenting ForTrilinos BaseCode
LatticeQCD Experimenting PEEKS Base Code
ProxyApp Base Code (in parts)
COPA Base Code Additionally: Many ASC applications at Sandia are
ExaGraph Base Code (in parts) porting or using Kokkos in their base code.
ExalLearn Committed (in parts) ~=
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Kokkos Users In the Greater HPC Community = kokkos

« Many Institutions outside of DOE started experimenting with Kokkos or have
projects which are already committed

* This does not include projects who only use Kokkos indirectly via Trilinos solvers
Max-Planck-Institut
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Extending Kokkos With PGAS Semantics wkokkos

« Kokkos View: Multi-Dimensional Array with Layout and MemorySpace
— View<double**[3], LayoutLeft, CudaSpace> a(“A”,N,M);
- a(i,j,1) = 5.0;
— Can return meta-object: e.g. View<double*,MemoryTraits<Atomic>>

 |[dea: Add new memory spaces which return data handles with shmem semantics
— View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);
— Operator a(i,j,k) returns:

template<>

struct NVShmemElement<double> {
NVShmemElement(int pe , double® ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double p(ptr,val,pe); }
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A Test Case: CG-Solve wkokkos

» Using MiniFE Input Matrix

— Compare against MPI MiniFE/Cuda implementation
« Well optimized: communication hiding algorithm + ELL Matrix Format instead of CSR

A series of sparse-matrix vector multiply (SPMV), dot product, and
vector adds

— Only remote accesses are inside SPMV:y =A™ x;
— No change from serial kernel.

parallel_for("spPmv", Kokkos::TeamPolicy<>((nrows+rows_per_team-1)/rows_per_team,team_size,8),
KOKKOS_LAMBDA (const Kokkos::TeamPolicy<>::member_type& team) {
const int64_t first_row = team.league_rank()*rows_per_team;
const int64_t Tast_row = first_row+rows_per_team<nrows ? first_row+rows_per_team:nrows;
parallel_for(TeamThreadRange(team,first_row,last_row), [&] (const int64_t row) {
intb4_t row_start=A.row_ptr(row);
int64_t row_length=A.row_ptr(row+l)-row_start;

double y_row;

parallel_reduce(ThreadvectorRange(team,row_length), [&] (const int64_t i,double& sum) {
int64_t idx = A.col_idx(i+row_start);
sum += A.values(i+row_start)*x(idx);

},y_row);
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Performance wkokkos

CGSolve Performance
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Optimize Away Non-Inline Function Calls = kokkos

« Store array of remote pointers in the View
— Implemented via specialization of the pointer type
— Obtained via shmem_ ptr(pe,ptr) call during view construction

* Return type of View is now simple scalar reference (e.g. double&)
* Relies on direct accessible of memory
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Performance Results — Inline Functions . kokkos

CGSolve Performance
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PV
Performance vs Convenience = kokkos

* Previous implementation did runtime div/mod operation in data
access

« Performance can be improved by using explicit Rank / Offset access

— Not too bad: encode rank in the Matrix Ordinal as:
« idx/local_length * MASK + idx%local_length
* Index as: x(idx/MASK, idx%MASK)
« With MASK compile time power of two: index manipulation are shift operations

parallel_for("spPmv", Kokkos::TeamPolicy<>((nrows+rows_per_team-1)/rows_per_team,team_size,8),
KOKKOS_LAMBDA (const Kokkos::TeamPolicy<>::member_type& team) {
const int64_t first_row = team.league_rank()*rows_per_team;
const int64_t Tast_row = first_row+rows_per_team<nrows ? first_row+rows_per_team:nrows;
parallel_for(TeamThreadRange(team,first_row,last_row), [&] (const int64_t row) {
intb4_t row_start=A.row_ptr(row);
int64_t row_length=A.row_ptr(row+l)-row_start;

double y_row;

parallel_reduce(ThreadvectorRange(team,row_length), [&] (const int64_t i,double& sum) {
int64_t idx = A.col_idx(i+row_start);
sum += A.values(i+row_start)*x(idx/MASK, idx % MASK);

},y_row);

y(row) = y_row;
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Performance Results - Explicit Rank Split wkokkos
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Summary L kokkos

* NVSHMEM even In its prototype stage works and can provide an
efficient vehicle for Multi-GPU access in the same node

* Much simpler code than MPI but competitive with highly optimized
Implementations

« Kokkos Remote Space integration makes it trivial to use for Kokkos
applications

Questions:

» crirott@sandia.gov

» kokkosteam.slack.com

* [ssues @ github.com/kokkos/kokkos -
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