
:kokkos

Early Experience with NVSHMEM
Extending the Kokkos Programming Model with PGAS Semantics

Christian Trott

Sandia National Laboratories

www.github.com/kokkos

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA-0003525.

ce
S Lence

EXRISCRLE CO P TIN I E T

SAN D2018-XXXX PE

SAND2018-13126C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Why PGAS Models May Now Work

• Networks become more memory fabric like

• Hierarchical system designs with "SuperNodes"
- Summit: 6GPUs per Node less than 5000 Nodes for full machine

• DGX2: 16 GPUs interconnected with 300GB/s NVLINK

V1 00

V1 00

2 Exascale Computing Project

V1 00

V1 00

vioo7

VS
witc

:kokkos

EPP EXRSCRLE
COMPUTING
PROJECT

The Kokkos EcoSystem

Kokkos

Tools

Debugging

Profiling

Kokkos Remote Spaces

PGAS

Erience and Engineering Applications II

Kokkos EcoSystem

Kokkos Kernels

I Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution

Parallel Data
Structures

:kokkos

(
Kokkos
Support

Documentation

Tutorials

Bootcamps

[App support

Multi-Core Many-Core
3 Exascale Computing Project

APU CPU + GPU E,P1= EXRSCRLE
COMPUTING
PROJECT

Kokkos Users DOE
• We don't actually know who all is using (or trying) Kokkos.

• Labs included: SNL, ORNL, LANL, PNNL, NREL, LBL, ANL. Partial ECP Project List:

Application

SNL ATDM Apps Base Code (SPARC, EMPIRE,
Nimble, SPARTA, ...)

LANL ATDM Apps In Parts

EXAALT Base Code

QMCPack

ExaWind

ExaAM

LatticeQCD

Evaluation

Base Code

Experimenting

Experimenting

ProxyApp Base Code (in parts)

COPA Base Code

ExaGraph Base Code (in parts)

ExaLearn Committed (in parts)

4 Exascale Computing Project

Software Technology

SNL ATDM PMR

LANLATDM PMR

KokkosSupport

SNL ATDM DevTools

ExaPapi

SNL ATDM Math

ForTrilinos

PEEKS

:kokkos

This is Kokkos ;-)

Experimenting

Base Code (in parts)

Integration with KokkosTools

BaseCode

BaseCode

Base Code

Additionally: Many ASC applications at Sandia are
porting or using Kokkos in their base code.

EknP
EXRSCRLE
COMPUTING
PROJECT

Kokkos Users In the Greater HPC Community jw,icokicoF

• Many Institutions outside of DOE started experimenting with Kokkos or have
projects which are already committed

• This does not include projects who only use Kokkos indirectly via Trilinos solvers
Max-Planck-Institut

Ey UNIVERSITY
 für Plasmaphysik

ARL
OF UTAF1

Elk University of
MCI BRISTOL

5 Exascale Computing Project

11%

UNIVERSITY OF
CAMBRIDGE

JwnLICH
FORSCHUNGSZENTRUM

x4Nta cscs

Centro Svizzero di Caloolo Scientificox-e Swiss National Supercomputing Centre

U.S. NAVAL
RESEARCFi
LABORATORY

E,c1f= EXRSCRLE
COMPUTING
PROJECT

Extending Kokkos With PGAS Semantics

• Kokkos View: Multi-Dimensional Array with Layout and MemorySpace
— View<double**[3], LayoutLeft, CudaSpace> a("A",N,M);

— a(i,j,1) = 5.0;

— Can return meta-object: e.g. View<double*,MemoryTraits<Atomic>>

• Idea: Add new memory spaces which return data handles with shmem semantics
View<double**[3], LayoutLeft, NVShmemSpace> a("A",N,M);

Operator a(i,j,k) returns:

template<>
struct NVShmemElement<double>
NVShmemElement(int pe_, double* ptr_):pe(pe _),ptr(ptr _) {}
int pe; double* ptr;
void operator = (double val) shmem_double_p(ptr,val,pe); }

};

6 Exascale Computing Project EPP EXRSCRLE
COMPUTING
PROJECT

A Test Case: CG-Solve :kokkos

• Using MiniFE Input Matrix
— Compare against MPI MiniFE/Cuda implementation

• Well optimized: communication hiding algorithm + ELL Matrix Format instead of CSR

• A series of sparse-matrix vector multiply (SPMV), dot product, and
vector adds
— Only remote accesses are inside SPMV: y = A* x;

— No change from serial kernel.
parallel_for("sPmv", Kokkos::TeamPolicy<>((nrows+rows_per_team-)/rows_per_team,team_size,
KOKKOS_LAMBDA (coris Kokkos::TeamPolicy<>::member_type& team) {
const int64_t first_row = team.league_rank()*rows_per_team;
const int64_t last_row = first_row+rows_per_team<nrows ? first_row+rows_per_team:nrows;
parallel_for(TeamThreadRange(team,first_row,last_row), [&] (_onst int64_t row) {
int64_t row_start=A.row_ptr(row);
int64_t row_length=A.row_ptr(row+)-row_start;

double y_row;
parallel_reduce(ThreadvectorRange(team,row_length), [&] (const int64_t i,douL & sum)
int64_t idx = A.col_idx(i+row_start);
sum += A.values(i+row_start)*x(idx);

1,y_row);
y(row) = y_row;

1);
1);

7 Exascale Computing Project

{

) ,

EXRSCRLE
COMPUTING
PROJECT

Performance

6000

5000

4000

14 3000

2
1- 2000

1000

0

8 Exascale Computing Project

0.68
0.74 I 0.41

1001'3

CGSolve Performance

1 0 68

2001'3

0
0.70

.45

• MPI-1 MPI-2 MPI-4 • SHMEM-1 MI SHMEM-2 SHMEM-4

:kokkos

0.75

400^3

0.73

0.68

EXRSCRLE
COMPUTING
PROJECT

Optimize Away Non-lnline Function Calls KOKK OS

• Store array of remote pointers in the View
— Implemented via specialization of the pointer type

— Obtained via shmem_ptr(pe,ptr) call during view construction

• Return type of View is now simple scalar reference (e.g. double&)

• Relies on direct accessible of memory

9 Exascale Computing Project EPP EXRSCRLE
COMPUTING
PROJECT

Performance Results lnline Functions

6000

5000

4-# 4000z

y 3000

2
I- 2000

1000

10 Exascale Computing Project

0.85

100^3

0.95

0.95

CGSolve Performance

0.79

2001\3

0.84

0.76

• MPI-1 MPI-2 MPI-4 ■ SHMEM-1 SHMEM-2 SHMEM-4

:kokkos

0.89

4001'3

0.87

E,P1=

0.88

EXRSCRLE
COMPUTING
PROJECT

Performance vs Convenience :kokkos

• Previous implementation did runtime div/mod operation in data
access

• Performance can be improved by using explicit Rank / Offset access
— Not too bad: encode rank in the Matrix Ordinal as:

• idx/local_length * MASK + idx%local_length

• Index as: x(idx/MASK, idx%MASK)

• With MASK compile time power of two: index manipulation are shift operations

parallel_for(SPMV' , Kokkos::Teampolicy<>((nrows+rows_per_team-)/rows_per_team,team_size,
KOKKOS_LAMBDA (col_ Kokkos::TeamPolicy<>::member_type& team) {
const int64_t first_row = team.league_rank()*rows_per_team;
const int64_t last_row = first_row+rows_per_team<nrows ? first_row+rows_per_team:nrows;
parallel_for(TeamThreadRange(team,first_row,last_row), [&] (_onst int64_t row) {
int64_t row_start=A.row_ptr(row);
int64_t row_length=A.row_ptr(row+)-row_start;

double y_row;
parallel_reduce(ThreadvectorRange(team,row_length), [&] (const int64_t i,dou & sum)
int64_t idx = A.col_idx(i+row_start);
sum += A.values(i+row_start)*x(idx/MASK, idx % MASK);

1,y_row);
y(row) = y_row;

});
});

11 Exascale Computing Project

{

) ,

EXRSCRLE
COMPUTING
PROJECT

Performance Results - Explicit Rank Split

6000

5000

4000

112 3000

2_c
1- 2000

1000

0 ■

12 Exascale Computing Project

0.97

100'9

1.08

1.20

CGSolve Performance

0.91

200'9

0.96

0.97

• MPI-1 MI31-2 MPI-4 ■ SHMEM-1 SHMEM-2 SHMEM-4

:kokkos

0.88

4001'3

0.99

Ef6P

1.0

EXRSCRLE
COMPUTING
PROJECT

Summary :kokkos

• NVSHMEM even in its prototype stage works and can provide an
efficient vehicle for Multi-GPU access in the same node

• Much simpler code than MPI but competitive with highly optimized
implementations

• Kokkos Remote Space integration makes it trivial to use for Kokkos
applications

Questions:
• crtrott@sandia.gov
• kokkosteam.slack.com
• Issues @ github.com/kokkos/kokkos

13 Exascale Computing Project E,c1f= EXRSCRLE
COMPUTING
PROJECT

