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ot ivat ion

• Many-query problems can impose a formidable computational burden

• Solution approximations can exchange fidelity for speed

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions C3Sandia National Laboratories
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Solution Approximations

• Inexact solutions: When solving nonlinear equations, prematurely
end the iterative process

• Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

• Reduced-order models: Decompose the solution into a linear
combination of mu < Nu basis functions

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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• Solution approximations require less time than high-fidelity models
but introduce an error (i.e. epistemic uncertainty)

• Ultimate task should account for all sources of uncertainty

• We quantify the uncertainty by

1) engineering features informative of the error

• cheaply computable

• generated by approximate model

2) applying machine learning regression techniques to construct
statistical model of the error from these features

• This work matures our previously developed capabilities:
— Hand-selecting one feature and applying Gaussian process regression

M. Drohmann and K. Carlberg (2015)

— Modeling dynamical systems error using machine learning methods
S. Trehan et al (2017)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Parameterized Nonlinear Algebraic Equations

Parameterized systems of nonlinear algebraic equations

r,(u(µ); µ) = 0

• r, : x RNA —> RNu residual, nonlinear in at least u(µ)

• µ E D parameters in parameter domain D C

• u : RNA RNU state (solution vector)

N„

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Quantity of Interest

Scalar-valued quantity of interest

s(µ) = g(u(µ))

• s : quantity of interest

• g : R dependency of the quantity of interest upon the state

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Approximate Solutions

• Computing the exact solution u(it) can be

— prohibitively expensive (large Ar,i)

— unnecessary (inexact solutions suffice for optimization convergence)

• Such cases require an approximate solution ii : RNA —> RN.

• Approximate solution leads to approximated quantity of interest

§(µ) = g(ii(µ)),

where š : RNA R

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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pproximate o utions continue

We consider 3 approaches for computing approximate solutions:

1) Premature termination of nonlinear iterations

2) Lower-fidelity model

3) Model reduction

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories



Introduction Parameterized Nonlinear Equations Approach Experiments Summary
000 000000000000o 000000000000 0000000000000000 oo

Inexact Solutions

• Iterative solution to nonlinear equations: sequence of approximations

u(k), k = 0, , K

• Approximate solution u(K) can be obtained after iteration K

fii( it) = u(K)

• K can be determined by

— satisfying a modest (e.g., c = 0.1) tolerance

Mr*(11(K) II)11111r*(0; 11)11 < E

— selecting a modest maximum number of iterations (e.g., K=2)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Fidelity reduction approaches

• Neglect physical phenomena

• Reduce spatial accuracy

— Coarsen the mesh and prolongate (interpolate) the solution:

= A111,F, A E RNu 
X NuLr

— Use lower-order finite differences or elements

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Model Reduction

Model reduction restricts approximate solution 1.1 to mu-dimensional
affine trial subspace U. + Ran(4,u) C RNu with mu < Nu:

(tt) = u + u ( )

• 43„ E Xvux771u trial basis, computed using

— proper orthogonal decomposition (POD)
— the reduced-basis method
— variants that employ gradient information

• U : generalized coordinates of the approx. solution

• u E RNI' a reference state

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Model Reduction (continued)

• r,(a+ 4.01(p); p) = 0 is overdetermined: Nu equations, mu unknowns

• Second step projects residual onto an mu-dimensional test subspace
Ran(ilfu) C RNU:

(Puii(µ); it) = 0

• ‘Pu E R-/Yu'rnu is test basis, common choices include

— Galerkin projection: = (Du

Or*
— Least-squares Petrov—Galerkin projection: Wu = —

au
(a+ ikuil(tt);11),Pu

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Approaches for Error Quantification

• Regardless of approach, it is essential to quantify error incurred by
employing approximate solution u in lieu of exact solution u

• Existing approaches include

— Data-fit mapping between parameters and the error

• Inspired by multifidelity design optimization

— Reduced-Order Model Error Surrogates (ROMES) method

M. Drohmann and K. Carlberg, 2015

• Quantity of interest error approximation using dual-weighted residuals

• Normed state-space error approx. using residual norm and error bounds

• This work focuses on quantifying two such errors:

1) Error in quantity of interest: 88(µ) s(µ) — §(µ)

2) Normed state-space error: 6u(µ) Ile(A)112, where e(p,) n40 — it(t.t)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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State-Space Error

The residual can be approximated about the approximate solution ii:

r,(u(a); = o = r(A) + J(1-)e(a) + O(Ile(a)112)

and rearranged to approximate the state-space error:

e(u) = -J(P)-16-t) + 0(11e(P)112)

• r(µ) r,(11(µ); µ) residual from approximate solution

• 
Or,j(p) _  (11(p); p) E RATux.A4, Jacobian of residual at 11(µ)
Ou

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Error in the Quantity of Interest

The quantity of interest also can be approximated:

ag
s(p) = š(p) + (.1(u(11))e(p) + O(Ile(p)112)

and combined with the state-space error approximation to yield

Og
(5,9(1-t) = --ou(u(p)).1(1-)-1 r(p) + O(Ile(p)112)

y(A)T

• y(µ) is the dual or adjoint

• dual-weighted residual d is weighted sum of residual elements:

d(p) = 37(p)Tr(p)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Drawbacks to using the Dual-Weighted Residual

• Computational Cost: requires solving Nu linear equations

• Implementation: requires Jacobian — not always available

• Uncertainty Quantification: low-bias error estimate not assured

Nonetheless, construction provides insight into quantity-of-interest error

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Normed State-Space Error

• Residual-based bounds commonly used to quantify 6,i(µ)
A. Buffa et al., 2012; M. A. Grepl and A. T. Patera, 2005; G. Rozza et al., 2008

• Assuming Lipschitz continuity for the residual r,(.; A), then

111'40112 111*(1412 
< 8u(µ)

/3(//) a(P)

where a and are Lipschitz constants

• Drawbacks to using error bounds

— Sharpness: Upper/lower bounds can overpredict/underpredict actual
error by several orders of magnitude

— Implementation: Difficult to compute true Lipschitz constants

— Uncertainty Quantification: Do not produce statistical distribution
over (5„(µ) — cannot quantify epistemic uncertainty

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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verview

• We aim to construct statistical models of

— quantity-of-interest error 8,

— normed state-space error 8„

• We apply high-dimensional regression methods from machine learning

• We use a large number of inexpensive error indicators, resulting in
less costly, more accurate error models

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Error Model

• Assume there exist Nx error indicators or features X(p) E RN'

— available from solution approximation

— cheaply computable

— informative of the error 6(µ) E R

• We model the nondeterministic mapping x(u) (5(µ)

(5(m) = f (x(P)) + e(x(m))

• f: deterministic regression function

• €: nondeterministic noise

— Mean-zero random variable

— Accounts for irreducible error due to missing features

— Epistemic — additional features can enable zero noise

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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• Regression function defines conditional expectation of error given the
features:

E[6.(m) I x(tt)] = f(x(tt))
• We construct approximations of

— deterministic regression function f)

— nondeterministic noise E),

which yield a statistical model for the approximate-solution error

= f(x(P))+ (x(tt))

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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egression o e jeetives

• Cheap: Should employ cheaply computable features x

• Low Noise Variance: Should exhibit low noise variance, reduce
epistemic uncertainty introduced by approximate solution

• Numerically Validated: Empirical distributions of S and S should
be close on test set not used to train model — should not overfit on
training data

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories



Introduction Parameterized Nonlinear Equations Approach Experiments Summary
000 0000000000000 000000000000 0000000000000000 oo

egression o e onstruction teps

1) Feature engineering

— Cheaply computable features x from approximate model

— Informative of the error — construct low-noise-variance model

— Low dimensional (small N.) such that less training data is needed

2) Regression-function approximation

— Construct f using methods from machine learning
— Approximate mapping from features x to error 6 on a training set

3) Noise approximation

— Mean-zero, constant-variance Gaussian random variable: e JV(0, 8-2)

— i3-2 is sample variance of regression-model noise on test set
(mean squared error on test set)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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ummary

Training

Parameters p,
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Training

Parameters p,
. 

—> High-Fidelity Model

—>( Approximate Model
•
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Training
•

High-Fidelity Model —> u(p)
•

Parameters p,

—>( Approximate Model —> Mit)
.

Features x(µ)
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Training

Parameters p,
. 

•

High-Fidelity Model —> u(p) —

Approximate Model —> ti(p) —

Error (5 ( ft)

Features x(µ)
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Training

High-Fidelity Model

Parameters µ

Approximate Model

Error 8(µ)

Features x(µ)

Error b(µ)

 > Features x(µ)
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Training

Parameters µ
. 

Error (5(µ)

Features X(1.1)

•

High-Fidelity Model —> u(µ) —

• •

Approximate Model —> 11W —
•

•

Regression Model Creation

Error (5 ( ft)

Features x(µ)
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Training
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Training

High-Fidelity Model —> u(µ) —

Parameters µ Error (5 ( ft)
.e•-•

Approximate Model —> 11(µ) —
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Error (5(µ)

Regression Model Creation
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Training

High-Fidelity Model —> u(µ) —
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —
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Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ)

Error (5 ( ft)

Features x(µ)
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

.e•-•

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ) —>

 > la(tt)

Error (5 ( ft)

Features x(µ)

 >{(tt) f(x(p))

Regression Model
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ)

 > la(tt)

Error (5 ( ft)

Features x(µ)

Regression Model —> 65(p) f (x(µ))
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ) —>

( tt )

Regression Model

Error (5(µ)

Features x(µ)

( ) (x(N-))

8(tt) ̂  g(tt) + 5s(1-1)

65(p) f(x(p))
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eat ure ngineering: arameters

x(tt) =

• The mapping it H ö(f.t) is deterministic, but often complex

— Can be oscillatory for ROMs since S(µ) 0 when µ E

• Could yield zero noise variance if

— Large amounts of training data

— Sufficiently flexible regression model

• Low-quality feature

• Used by 1multifidelity correction' methods for optimization
Alexandrov et al., 2001; Gano et al., 2005; Eldred et al., 2004

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Feature Engineering: Dual-Weighted Residual

x(11) = d(P) = 3r(tt)Tr(P)

• Second-order-accurate approximation of QoI error 8,40

• Small number (Nx = 1) of high-quality features

• High computational cost and significant implementation effort

• ROMES method uses approximation for dual-weighted residual
M. Drohmann and K. Carlberg, 2015

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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eature ngineering: arameters an esi ua pproximations

x(tt) = [A; 1'(µ)]

• DWR is weighted sum of residual vector elements d(µ)=y(µ)Tr(µ)

• Avoids implementation and costs associated with dual vector y(µ)

• Large number (Nx = Nu,+ Nu) of low-quality features

• Approaches to reduce number of features and improve quality

— Use nt, < Nu principal component coefficients: f(A)

— Sample nr < Nu elements of residual: Pr(µ), where P c {0, 
l}nr x Nu

— Use mi. < Nu gappy principal component coefficients: fg(µ)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Feature Engineering: Residual Norm with/without Parameters

x(p) = 4'(/-1)112 or x(p) = [I-t; 111'40112]

• DWR can be bounded using the Cauchy—Schwarz inequality:

Id(11)1 < Ily(1-)11211r(p)112

• Normed state-space error 6.40 can be bounded:
M. Drohmann and K. Carlberg, 2015

11r1301)
(m)112 < („) < 11r(

(A)
A)112 

— — cY 

• µ can be omitted (x(µ) = llr(p)112) if

— µ is not indicative of error

— NA is too large relative to training data

• Requires computing entire residual vector r(µ)

• Small number of potentially low-quality features
Freno & Carlberg Machine-Learning Error Models for Approximate Solutions cjSandia National Laboratories
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egression- unction pproximat ion

We consider several different regression models

• Ordinary least squares (OLS)

— Linear (OLS: Linear)

— Quadratic expansion of features (OLS: Quadratic)

• Support vector regression (SVR)

— Linear kernel (SVR: Linear)

— Gaussian (radial basis function) kernel (SVR: RBF)

• Random forest (RF)

• k-nearest neighbors (k-NN)

• Artificial neural network / multilayer perceptron (MLP)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Training and Test Data

Training Data

• Consists of parameter p, subset from parameter space D

• High-fidelity and approximate solutions train regression models

• Cross-validated to tune regression model hyper-parameters

• Used to compute principal components of residuals

Test Data

• Consists of parameter p, choices not used for training data

• Used to assess regression models and quantify nondeterministic
noise

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Cube: Reduced-Order Modeling

• Applied traction (Neumann boundary condition)

• Planar constraint (Dirichlet boundary condition)

• Complete constraint (Dirichlet boundary condition)

• Node of interest

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Cube: Overview

• Nu = 3993 — deliberately small to calculate d(µ) and use r(it)

• N, = 3 parameters: µ = [E; v; t]

— E E [75, 125] GPa, v E [0.20, 0.35], t E [40, 60] GPa

• 8 HF runs —> up to mu = 8 ROM basis functions (2 used — 99.25%)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Cube: FVU for QoI Error Prediction

OLS: Linear

0 OLS: Quadratic

00 SVR: RBF

RF

tO

f:ca' 
k-NN

MLP

SVR: Linear

10g10 FVU

•

F 
= ga g. 7  A' A
A
4  4,=•

A '1' 4 III-

Features

log10 FVU

■

To

A — i 4.

Features

• 

Fraction of variance unexplained (FVU) is 1 — r2 (r2 is coefficient of determination)

• SVR: RBF and MLP perform the best

• [tt; f•g] and [p; Pr] well with only q = 10 samples (compared to Ari, = 3443)

0

-2

-3
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Cube: QoI Error Predictions
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• Our methods beat previous
state-of-the-art methods with
r2 > 0.9999 in both cases

12
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Predicted d, 101

4 3 2 1 0

Predicted 5.,„ [

1 2

0-2]
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3 4

Exact

OLS: Quadratic
rt=0.53746, MBE-1.106810-4

MLP
t'=0.99915, MSE=2.036x10-e

dos
• OLS: Quadratic

rt=0.98086, MSE=4.579 x10-

[ja; kg] (8-10)
• SVR: RBF

rt=0.99995, MBE-1.089510-r

Exact

[kb
OLS: Linear
l'=0.05101, MSE=1.725 x10-4

SVR: RBF
rt=0.99995, MBE-8.972810'

e/Ag
• SVR: RBF

rt=0.99843, MSE=2.844810-7

[it; 1.,[ (q=100)
• SVR: RBF

7.2=0.99999, MBE-1.071810-9
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Cube: FVU for Normed State-Space Error Prediction

Re
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 OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF
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k-NN

MLR
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Features

•

— s

• SVR: RBF and MLP perform the best

• [µ; f.g] and [µ; Pr] perform well with only q = 10 samples (compared to Nu = 3443)
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u e: orme tate- pace rror re ictions

— Exact

OLS: Quadratic
rt=0.73025, MSE=1.134x10-i

• MLP
r2=0.99542, MSE=1925 x10-3

[m; f•al (9=10)
• MLP

ra=0.99837, MSE=6.862 x10-4

• Our methods beat previous state-of-the-art methods with r2 > 0.998

F]'eno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Predictive Capability Assessment Project: Reduced-Order Modeling

Deformation

Magnitude [m]

0.011

0.010

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

• Applied pressure (Neumann boundary condition)

• Planar constraint (Dirichlet boundary condition)

• Complete constraint (Dirichlet boundary condition)
▪ Ne r „rest
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PCAP: Overview

• Nu = 278, 301 for quarter of domain

• No = 3 parameters: p, = [E; v; t]

— E c [50, 100] GPa, v E [0.20, 0.35], p c [6, 10] GPa

• 8 HF runs —> up to mu = 8 ROM basis functions (5 used — 99.90%)

• 30 training runs for regression model
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: • asis unctions

1: 85.03%

4: 99.77%

2: 95.69%

5: 99.90%

3: 99.35%
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PCAP: FVU for QoI Error Prediction

OLS: Linear

0 OLS: Quadratic

SVR: Linear

SVR: RBF

O

Pca'

RF

k-NN

MLP

loglo FVU

'OF

11111
ia

a

Features

ia

'py: log10 FVU

,•4.7 79' :5; i
7  l'Ail i 
A a-,. .27 ,';' H:.  '

A A P . e‘;' 
:6,

A- — 4- A.

Features

Fraction of variance unexplained (FVU) is 1 — r2 (r2 is coefficient of determination)

• SVR: RBF and MLP perform the best

• [tt; f•g] and [p; Pr] well with only q = 100 samples (compared to Nu = 278, 301)

-3
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PCAP: QoI Error Predictions
000000000000 0000000000000000 oo

• Our methods beat previous
state-of-the-art methods with
r2 > 0.9996 in both cases

4

2

0

—2

<1'
; —4

a —6

—8

10
10 fi 4 2 0

Predicted Ci,„ [810-3]

2 4

Exact

iiruz
• SVR: RBF

i.=0.99011, MSE=1.419810-

▪ RF
r'=0.99511, MSE=7.014x100

[A; 8]
• MLP

rr=0.99996, MSE=5.325 810-.

Exact

• SVR: RBF
rr=0.94712, MSE=2.424x10-'

• MLP
r2=0.96851, WE-1.444810-7

[A; 8]
• SVR: RBF

rr=0.99968, MSE=1.444810-
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PCAP: FVU for Normed State-Space Error Prediction

Re
gr
es
si
on
 M
e
t
h
o
d
s
 OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF

RF

k-NN

MLP

SAM logm FVU
T

Features

ii ii

OP"

— I

—2

—3

—4

—5

• MLP performs the best

• [µ; f.g] and [µ; Pr] perform well with only q = 10 samples (compared to N,„ = 278, 301)
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PCAP: Normed State-Space Error Predictions

1.2

LO

0.8

0.6

0.4

0.2

0.0

0.2
0 0 0.2 0.4 0.6 0.8 1.0 1 2

Predicted Su

— Exact

OLS: Quadratic
7.=0.97544, MSE=1.759 x10'

• MLP
7'5=0.98475, MSE=1.092 x10-3

[m; 0=1(0
• MLP

r2=0.99837, MSE=1.170 x10-4

• Our methods beat previous state-of-the-art methods with r2 > 0.998
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Burgers' Equation: Unconverged Iterations and Coarse Solution Prolongation

1
uux — —

R
uxx = a sin 27rx

u(0) = ua, u(1) =

3  
00

• Nu = 2001

• Nu = 3 parameters: it = [a; ua;

— a E [0.1, 2.0], ua c [0.1, 2.0], R c [50, 1000]

• Quantity of interest s is the slope m at x =

• K = 1 and K = 2

0.2 0.4 0.6

x

or NuL, = 501 and NuL, = 1001

0.8 1 0
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Burgers' Equation, Unconverged Iterations: QoI Error Predictions

E
x
a
c
t
 d
A

,,,
, 
[
x
1
0
9
 

5

0

-5

-10

-15

-20

25
-25 -20 -15 -10 -5

Predicted SA, [x102]

— Exact

• MLP
7.2=0.26913, MSE=1.395x105

[p; (q=1000)
• MLP

7.2=0.99996, MSE=7.302

• Our methods beat previous state-of-the-art method with r2 > 0.9999
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Burgers' Equation, Coarse Mesh Prolongation: QoI Error Predictions

E
x
a
c
t
 d
A
„,

 [
x
1
0
9
 

-8 -6 -4 -2

Predicted SA, [x101

— Exact

11.12
OLS: Quadratic
re=0.97913, MSE=4.032 xl.CP

A
• SVR: REF

7.2=0.99979, MSE=4.091

kz; (q=10)
• SVR: REF

r2=0.99996, MSE=7.853 10-C

• Our methods beat previous state-of-the-art methods with r2 > 0.9999

• Only q = 10 samples (compared to Nu = 2001)
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• Introduction

• Parameterized Nonlinear Algebraic Equations

• Proposed Approach

• Numerical Experiments

• Summary
— Feature Choices
— Feature Reduction
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eature oices

• Norm of the residual, 11r112

— Low-quality single feature

— Expensive to compute and performs poorly

• Dual-weighted residual, d
— High-quality single feature

— Performs well for small amounts of training data

— Very expensive to compute

• Parameters it

— Only perform well with SVR: RBF or MLP

— Do not perform well with OLS: Linear

• Parameters and gappy principal componenets of residual, [ti; fg]
— Performs the best with r2 > 0.998 for each experiment

— Only requires about 13 features
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Feature Reduction

• Gappy PCA more effective than directly sampling the residual

• Little benefit to using q > 100 samples; more samples are more
expensive and do not perform much better

• Often, only q = 10 samples are necessary to get accurate prediction
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uest ions .

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.

The views expressed in this presentation do not necessarily represent
the views of the U.S. Department of Energy or the United States
Government.
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