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Motivation

e Many-query problems can impose a formidable computational burden

¢ Solution approximations can exchange fidelity for speed
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Solution Approximations

¢ Inexact solutions: When solving nonlinear equations, prematurely
end the iterative process

¢ Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

¢ Reduced-order models: Decompose the solution into a linear
combination of my, <« Ny basis functions
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Uncertainty Quantification

e Solution approximations require less time than high-fidelity models
but introduce an error (i.e. epistemic uncertainty)

e Ultimate task should account for all sources of uncertainty

¢ We quantify the uncertainty by

1) engineering features informative of the error
* cheaply computable

* generated by approximate model

2) applying machine learning regression techniques to construct
statistical model of the error from these features

e This work matures our previously developed capabilities:
— Hand-selecting one feature and applying Gaussian process regression

M. Drohmann and K. Carlberg (2015)
— Modeling dynamical systems error using machine learning methods
S. Trehan et al. (2017)
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Outline

e Parameterized Nonlinear Algebraic Equations
— Overview
— Approximate Solutions
— Approaches for Error Quantification
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Parameterized Nonlinear Algebraic Equations

Parameterized systems of nonlinear algebraic equations

r.(u(p);p) =0

e 1, : RN x RNu — RNu residual, nonlinear in at least u(u)
e p € D parameters in parameter domain D C RV«

e u: RV — RN gtate (solution vector)
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Quantity of Interest

Scalar-valued quantity of interest

e 5: RN — R quantity of interest

e g:RM — R dependency of the quantity of interest upon the state
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Approximate Solutions

e Computing the exact solution u(p) can be

— prohibitively expensive (large Ny)

unnecessary (inexact solutions suffice for optimization convergence)

e Such cases require an approximate solution @ : RV« — RNu

e Approximate solution leads to approximated quantity of interest

5(p) = g(a(w)),

where §: RV 5 R
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Approximate Solutions (continued)

We consider 3 approaches for computing approximate solutions:
1) Premature termination of nonlinear iterations
2) Lower-fidelity model

3) Model reduction
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Inexact Solutions

e Iterative solution to nonlinear equations: sequence of approximations
u(k), k=0,...,K
o Approximate solution u'®) can be obtained after iteration K
a(p) = u®)
e K can be determined by
satisfying a modest (e.g., € = 0.1) tolerance

Il (5 )|/ || (05 )| < €

— selecting a modest maximum number of iterations (e.g., K=2)
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Lower-Fidelity Models

Fidelity reduction approaches
¢ Neglect physical phenomena
e Reduce spatial accuracy

— Coarsen the mesh and prolongate (interpolate) the solution:
u=Auyp, Ac RN“XN“LF

— Use lower-order finite differences or elements
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Model Reduction

Model reduction restricts approximate solution u to my-dimensional
affine trial subspace u + Ran(®,,) C RN with my < Ny:

u(p) =u+ euu(p)

o &, € RNaxmu tria] basis, computed using

— proper orthogonal decomposition (POD)
— the reduced-basis method
— variants that employ gradient information

o 0 : RV — R™u generalized coordinates of the approx. solution

e @ € RMu g reference state
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Model Reduction (continued)

e r,(u+ ®,u(p); u) = 0 is overdetermined: N, equations, m, unknowns

e Second step projects residual onto an my-dimensional test subspace
Ran(¥,) C RMu:

Wlr, (G + ®uh(p);p) =0

e U, € RNVuX™u ig test basis, common choices include

Galerkin projection: ¥, = ®,

— Least-squares Petrov—Galerkin projection: ¥, = 801** (0 + Put(p); p) Py
u
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Approaches for Error Quantification

e Regardless of approach, it is essential to quantify error incurred by
employing approximate solution u in lieu of exact solution u

e Existing approaches include
— Data-fit mapping between parameters and the error
* Inspired by multifidelity design optimization

— Reduced-Order Model Error Surrogates (ROMES) method

M. Drohmann and K. Carlberg, 2015
* Quantity of interest error approximation using dual-weighted residuals

* Normed state-space error approx. using residual norm and error bounds

e This work focuses on quantifying two such errors:
1) Error in quantity of interest: ds(p) = s(p) — S(p)

2) Normed state-space error: d,(u) = |le(pu)l|2, where e(p) = u(p) — a(u)
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State-Space Error

The residual can be approximated about the approximate solution u:

r(u(p); p) =0 =r(p) + J(p)e(p) + O(|le(w)|?)

and rearranged to approximate the state-space error:
e(p) = —I() " r(p) + Olle(w)[*)

e r(p) =r.(a(p); p) residual from approximate solution
or,
ou

o J(pu) = (a(p); p) € RN Jacobian of residual at @(g)
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Error in the Quantity of Interest

The quantity of interest also can be approximated:

s(u) = 3(p) + 5 -(Ulw))e(n) + O(lle(p)|?)
and combined with the state-space error approximation to yield

99

S (@I v () + O(le(w))

y()T

ds(pm) =

e y(p) is the dual or adjoint

¢ dual-weighted residual d is weighted sum of residual elements:
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cks to using the Dual-Weighted Residual

e Computational Cost: requires solving IV, linear equations
e Implementation: requires Jacobian — not always available

¢ Uncertainty Quantification: low-bias error estimate not assured

Nonetheless, construction provides insight into quantity-of-interest error
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Normed State-Space Error

¢ Residual-based bounds commonly used to quantify dy ()

A. Buffa et al., 2012; M. A. Grepl and A. T. Patera, 2005; G. Rozza et al., 2008
e Assuming Lipschitz continuity for the residual r,(; ), then

S 511(/‘") S Ma

a(p

[r(p)ll2
B(w)

where « and 3 are Lipschitz constants

¢ Drawbacks to using error bounds

— Sharpness: Upper/lower bounds can overpredict/underpredict actual
error by several orders of magnitude

— Implementation: Difficult to compute true Lipschitz constants

— Uncertainty Quantification: Do not produce statistical distribution
over d, () — cannot quantify epistemic uncertainty
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Outline

¢ Proposed Approach
Overview
— Feature Engineering
— Regression-Function Approximation
— Training and Test Data
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e We aim to construct statistical models of
— quantity-of-interest error §,

normed state-space error §y

e We apply high-dimensional regression methods from machine learning

e We use a large number of inexpensive error indicators, resulting in
less costly, more accurate error models
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Error Model

e Assume there exist Ny error indicators or features x(p) € RVx

— available from solution approximation
— cheaply computable

— informative of the error §(p) € R

* We model the nondeterministic mapping x(u) — d(p)

o(p) = f(x(p)) + e(x(p))

e f: deterministic regression function
e e: nondeterministic noise

— Mean-zero random variable
— Accounts for irreducible error due to missing features

— Epistemic — additional features can enable zero noise

[ational Laboratories
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Regression Model

¢ Regression function defines conditional expectation of error given the
features:

E[0(u) [ x(p)] = F(x(1))

¢ We construct approximations of
deterministic regression function f(~ f)
— nondeterministic noise é(~ €),
which yield a statistical model for the approximate-solution error

~ ~

o(p) = f(x(p)) + é(x(p))

@ Sandia National Laboratories



Approach
[e]e]e] Tele]

Regression Model Objectives

e Cheap: Should employ cheaply computable features x

e Low Noise Variance: Should exhibit low noise variance, reduce
epistemic uncertainty introduced by approximate solution

e Numerically Validated: Empirical distributions of § and & should

be close on test set not used to train model — should not overfit on
training data
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sion Model Construction Steps

1) Feature engineering

— Cheaply computable features x from approximate model
— Informative of the error — construct low-noise-variance model

— Low dimensional (small Ny) such that less training data is needed

2) Regression-function approximation

— Construct f using methods from machine learning

— Approximate mapping from features x to error § on a training set

3) Noise approximation

— Mean-zero, constant-variance Gaussian random variable: é ~ N(0, 5?)

— &2 is sample variance of regression-model noise on test set

(mean squared error on test set)
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Summary

Training
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Training

[ High-Fidelity Model ]

Parameters p

gre———

Approximate Model J
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Training

[ High-Fidelity Model }—»[u(u,)]
Approximate Model J—>[~ (,u,)]

l

Parameters p

gre———

(Fcat,ures x(p)
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Training

[ High-Fidelity Model }—»[u(y,)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

gre———

(Fcat,ures x(p)
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Sununa‘ry

Training

High-Fidelity Model Hu(u)
Approximate Model Hfl(u)

I (Fentur(‘s x(p)

Error §(p)

Parameters p

Features x(p)
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Training

High-Fidelity Model }—»[u(y,)
Approximate Model J—>[~ (p)

I (Fcat,ures x(p)

Parameters p Error o(w)

Error 6(u)

Regression Model Creation]

Features x(u)
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Training

High-Fidelity Model }—»[u(y,)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Fcat,ures x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error 6(u)

Features x(u)
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Training

High-Fidelity Model }—»[u(y,)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Fcat,ures x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error d(p)

Features x(u)

Application

wrameters
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Training

High-Fidelity Model }—»[u(y,)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Fcat,ures x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error 6(u)

Features x(u)

Application

[Para‘meters u]—»[ Approximate Model ]
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Summary

Training

High-Fidelity Model }—»[u(u)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Features x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error 6(u)

Features x(u)

Application

[Para‘meters u]—»[ Approximate Model ]—{ﬁ.(u)]

Features x(p)
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Summary

Training

High-Fidelity Model }—»[u(u)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Features x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error 6(u)

Features x(u)

Application

[Para‘meters u]—»[ Approximate Model ]—{ﬁ.(u)]
[*’eatures x(u)]—»[ Regression Model ]
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Summary

Training

High-Fidelity Model }—»[u(u)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Features x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error 6(u)

Features x(u)

Application

[Para‘meters u]—»[ Approximate Model ]—{ﬁ.(u)]
[*’eatures x(u)]—»[ Regression Model H(S(p,) ~ f(x(u))]
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Summary

Training

High-Fidelity Model }—»[u(u)
Approximate Model J—>[~ (p)

l

Parameters p Error o(w)

(Features x(p)

Regression Model Creation ]—»[5(#) ~ f(x<ﬂ))]

Error 6(u)

Features x(u)

Application

[Para‘meters u]—»[ Approximate Model ]—)[ﬁ(u)]—»[ s(p) ~ 3(p) + 35(114) ]
[*’eatures x(u)]—»[ Regression Model H(S(p,) ~ f(x(ﬂ))]
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Feature Engineering: Parameters

e The mapping p — J(p) is deterministic, but often complex

ROM
Train

— Can be oscillatory for ROMs since 0(p) ~ 0 when p € D

Could yield zero noise variance if
— Large amounts of training data

— Sufficiently flexible regression model

¢ Low-quality feature

e Used by ‘multifidelity correction’ methods for optimization

Alexandrov et al., 2001; Gano et al., 2005; Eldred et al., 2004
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Feature Engineering: Dual-Weighted Residual

* Second-order-accurate approximation of Qol error ()
e Small number (Nx = 1) of high-quality features

e High computational cost and significant implementation effort

ROMES method uses approximation for dual-weighted residual

M. Drohmann and K. Carlberg, 2015
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Feature Engineering: Parameters and Residual ( roximations)

x(p) = [p; r(p)]

* DWR is weighted sum of residual vector elements d(p) = y(u)
e Avoids implementation and costs associated with dual vector y(u)
* Large number (Nx = N, + Ny) of low-quality features

e Approaches to reduce number of features and improve quality

— Use m, < Ny, principal component coefficients: ()
— Sample n, < N, elements of residual: Pr(u), where P € {0, 1}"*Nu
— Use my < Ny gappy principal component coefficients: &y (1t)

@ Sandia National Laboratories
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Feature Engineering: Residual Norm with/without Parame

x() = lr(p)ll - or  x(p) = [w; [[r(p)ll2]
DWR can be bounded using the Cauchy—Schwarz inequality:

()] < [ly ()2l ()2

e Normed state-space error dy () can be bounded:

M. Drohmann and K. Carlberg, 2015

[LYAIE e
B < dulw) <55

e p can be omitted (x(p) = [|r(p)l2) if

— p is not indicative of error

— N, is too large relative to training data
e Requires computing entire residual vector r(u)

e Small number of potentially low-quality features
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Regression-Function Approximation

We consider several different regression models

¢ Ordinary least squares (OLS)
— Linear (OLS: Linear)

— Quadratic expansion of features (OLS: Quadratic)

 Support vector regression (SVR)
— Linear kernel (SVR: Linear)
— Gaussian (radial basis function) kernel (SVR: RBF)

e Random forest (RF)
e k-nearest neighbors (k-NN)

e Artificial neural network / multilayer perceptron (MLP)
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Training and Test Data

Training Data

¢ Consists of parameter p subset from parameter space D
¢ High-fidelity and approximate solutions train regression models
e Cross-validated to tune regression model hyper-parameters

e Used to compute principal components of residuals
Test Data
e Consists of parameter p choices not used for training data

e Used to assess regression models and quantify nondeterministic
noise

@ Sandia National Laboratories



Experiments

Outline

e Numerical Experiments
— Cube: Reduced-Order Modeling
PCAP: Reduced-Order Modeling
— Burgers’ Equation: Unconverged Iterations and Coarse
Solution Prolongation
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Cube: Reduced-Order Modeling

E
i
i

e Applied traction (Neumann boundary condition)

e Planar constraint (Dirichlet boundary condition)
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Cube: Overview

e Ny = 3993 — deliberately small to calculate d(p) and use r(p)

e N, = 3 parameters: p = [E; v; t]
— Ee[75, 125 GPa, v €[0.20,0.35], ¢ [40, 60] GPa

e 8 HF runs — up to my = 8 ROM basis functions (2 used — 99.25%)

[ational Laboratories
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Cube: FVU for Qol Error Prediction

0az: logg FVU Oay: log1g FVU
1
OLS: Linear
2]
° 0
9 OLS: Quadratic
=
i} =1
32 SVR: Linear
=
a L w
g SVR: RBF o 2
g
7]
2 RF »
I
& k-NN
o -4
MLP
L -5
=1L s s 53 £ &7 1T T = 25 i 4
"”\’H‘TTQE o I L FY O SR eSS
E == 828 L 4 E A I
QE?TWC/; _EETT\::
P ciffEw
- 2 = g 1 = i3 3 4
Features Features

Fraction of variance unexplained (FVU) is 1 — 72 (r? is coefficient of determination)

¢ SVR: RBF and MLP perform the best

o [p; t] and [p; Pr] well with only ¢ = 10 samples (compared to N, = 3443)
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: Qol Error Predictions

12 T T T T T — Exact
10
5 8
=2 u
X, 6 MLP
5 r2=0.99915, MSE=2.036x10""
= ;
£ dag
2 . OLS: Quadratic
= 2 12=0.98086, MSE=4.579x 106
0 [1: 1] (q=10)
« SVR: RBF
D 72=0.99995, MSE=1.089x 10~
0 2 4 6 8 10 12
e Our methods beat previous Predicted 55, [x10-2]
state-of-the-art methods with 1 — Exaict
- - .
r< > 0.9999 in both cases 3 // Irl2
. & OLS: Linear
. o 12=0.05101, MSE=1.725%10~"
L o1 d
= fd
E SVR: RBF
= r2=0.99995, MSE=8.972x10~*
PO ]
= day
" SVR: RBF
€3]

r2=0.99843, MSE=2.844x10"7

[1; 4] (q=100)
/R: RBF
2=0.99999, MSE=1.071x10~

Predicted da, [x102]
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Cube: FVU for Normed State-Space Error Prediction

dau: logig FVU

)
OLS: Linear
n
o i 0
S OLS: Quadratic
<
i} -1
3 SVR: Linear
P
g SVR: RBF -2
2
%
2 RF -3
e
& kNN
~ —4
MLP
-5
= = 2= 2
T = 8
il
& T E e ey
. & w
s &
EY § & 4 H
S § &
Features

¢ SVR: RBF and MLP perform the best

e [p; tg] and [p; Pr] perform well with only ¢ = 10 samples (compared to Ny = 3443)
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Normed State-Space Error Predictions

I
/ MLP
2=(.99542, MSE=1.925x10"%
P / 3 ) 2 X
[12: £] (q=10)

g « MLP
r?=0.99837, MSE=6.862x 10~*

Predicted 4,

o Our methods beat previous state-of-the-art methods with 72 > 0.998

Sandia National Laboratories



eriments
000000

Predictive Capability mer oject: Reduced-Order Modeling

Deformation
Magnitude [m]
0.011

0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

e Applied pressure (Neumann boundary condition)

e Planar constraint (Dirichlet boundary condition)
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PCAP: Overview

Ny = 278,301 for quarter of domain

N, = 3 parameters: p = [E; v; t]
— E €[50, 100] GPa, v € [0.20,0.35], p € [6, 10] GPa

8 HF runs — up to my, = 8 ROM basis functions (5 used — 99.90%)

30 training runs for regression model
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PCAP: Basis Functions

1: 85.03% 2 95.60% 3: 99.35%

19977% 5:99.90%
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PCAP: FVU for Qol Error Prediction

oar: logo FVU Oay: log1g FVU
0
OLS: Linear
72}
<
& OLS: Quadratic 1
=
=
i“’ SVR: Linear P
= -2
E SVR: RBF
z -3
8 RF
&
& k-NN
—4
~
-5
= S & § 8 © 4 2 = = 3 3 8 8 g 8 % 1
= s =2 8 8 8 = = = 2 8 8 8 8 7
£ T = w8 = = 1L L 3 3 8 g 2
E & & & ] ;S 2 s s 1 Il
=S &8 =& 3 N — g 2 4 4
£ & = = = & bar I —
U LI T T - I SR
=T = ¢ X B £ y 4 &
= 2 = 3 = = = 5 2
Features Features

Fraction of variance unexplained (FVU) is 1 — 72 (r? is coefficient of determination)

¢ SVR: RBF and MLP perform the best

o [p; t,] and [p; Pr] well with only ¢ = 100 samples (compared to Ny = 278,301)
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Experiments
0000800

— Exact

r2=0.99011, MSE=1.419x10~%

. RF
ol 7?=0.99511, MSE=7.014x 10~
g
~ [p: 7]
" * MLP
/ 7?=0.99996, MSE=5.:
—4
—4 -3 -2 -1 0 1
e Our methods beat previous Predicted a, [x10~7]
state-of-the-art methods with 1
2 -
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PCAP: FVU for Normed State-Space Error Prediction

dau: logig FVU

OLS: Linear
n
8 ) -
S OLS: Quadratic
= |-
=
3 SVR: Linear
=
g SVR: RBF
&
%
) RF
&
%3 k-NN
3 NI
MLP
£ T 3 3 2 =2
= = 2 § 8 R
= = L L 7 2
&5 = =0 =2
e
35 A
5 =S -
i3 y
Features

e MLP performs the best

o [p; tg] and [p; Pr] perform well with only ¢ = 10 samples (compared to Ny = 278,301)
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PCAP: Normed State-Space Error Predictions

10} / — Exact
S: Quadratic
/ r2=0.97544, MSE=1.759x10~*

e f\‘ILP

7%=0.98475, MSE=1.092x 10~

[12: £] (q=10)
+ MLP
12=0.99837, MSE=1.170x 10~

0.2 0 n n
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Predicted 4,

o Our methods beat previous state-of-the-art methods with 72 > 0.998
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Burgers’ Equation: Unconverged Iterations and Coarse Solution Prolongation

2 .
il . o P an
Uy — Eum = «asin 27y . I . |
N—
‘
w(l) =2y, w(l) = —ug 1t LS e
72 L
5 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
e Ny = 2001 z

* N, = 3 parameters: p = [a; uq; R]
—a€[0.1,20), u,€0.1,20, R e [50,1000]

¢ Quantity of interest s is the slope m at z = %

e K=1land K =2 or N,

uLf
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Burgers’ Equation, Unconverged Iterations: Qol Error Predictions

. — Exact
Fl
= = el
&= MLP
5 —10 r2=0.26913, MSE=1.395x 10°
B
] [ £ (g=1000)
2 -1 « MLP
72=0.99996, MSE=7.302
20
25
25 —20 ~15 -10 -5 0

Predicted da,, [x10%]

o Our methods beat previous state-of-the-art method with r% > 0.9999
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Burgers’ Equation, Coarse Mesh Prolongation: Qol Error Predictions

2 .
0 — Exact
A
IS 24 OLS: Quadratic X
kY 4 r?=0.97913, MSE=4.032x 10*
5 - "o
< SVR: RBF
g r2=0.99979, MSE=4.091
- -
[1; 7] (q=10)
8 e SVR: RBF
- 12=0.99996, MSE=7.853x 10"
—10
—10 =g —6 —4 ] 0

Predicted da, [x102]

o Our methods beat previous state-of-the-art methods with 2 > 0.9999

e Only ¢ = 10 samples (compared to N, = 2001)
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e Summary
— Feature Choices
— Feature Reduction
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Feature Choices

e Norm of the residual, ||r||2
— Low-quality single feature

— Expensive to compute and performs poorly

¢ Dual-weighted residual, d
— High-quality single feature
— Performs well for small amounts of training data

— Very expensive to compute

e Parameters u
— Only perform well with SVR: RBF or MLP

— Do not perform well with OLS: Linear

» Parameters and gappy principal componenets of residual, [p; T'g]
— Performs the best with 72 > 0.998 for each experiment

— Only requires about 13 features
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Feature Reduction

e Gappy PCA more effective than directly sampling the residual

e Little benefit to using ¢ > 100 samples; more samples are more
expensive and do not perform much better

e Often, only ¢ = 10 samples are necessary to get accurate prediction
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