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2 Bubble migration under a pressure gradient

Pu - - --
- --7=== zz :::___k

Fracture healing

Dilated zone

dM
— = 
dt 

ku(Pu - P) - kd(P - Pd)

k S Pd

Fracture opening

PV
ku = 14,) P kd = k3P M = 

RT

Continuous logistic equation

dP
= A 

K
iP (1 - P

dt 
)

(let PIt d + k° Pd)RT2.1 
= 

I 

V

(ki° + k3)RT Al

A2 = K = 
i12V

Delay logistic equation

—dP = Ai (1 - P
K
) f t G(t - s)p(s)ds

-codt 

dP / p t

Tit = 
Ai (1 — K) f ae-a(t-s)p(s)ds.



3

injection port -

Ouardaing port  

:"-

VGn

Sintered
stainless Gel

Hose Gail>

Gck pressure
eGusp

Nickel
tubing

End
- closure

Irnecfron

encl-CoP

SInlerecl
stsInless %Wel

fillnr

----- Confining MG

FORGE Report D4.17 (Harrington, 2013)

9000
a-

• 8000

Q.
cc • 7000

-o
re,
c 6000
0

•—
c 5000

10000 — Injection

—Rackpressur e
—Injection GR

—Rackpressure GR
Outflow

•

[12]
20

15

0

4000   -S

200 2 10 2 20 2 30 240
Time (days)

250 260

4E-10

35E-10 -

a.
•- 3E-10 •

2.5E-10 •

2E-10 -

E • 1.5E-10 •

0
1E-10 -

5E-11 •

— inflow STP

Outflow STP

—Injection pressure [15)

9500

9000

7500

  7000

200 250 300 350 400 450 500

Elapsed time (d)



4 
Bubble migration under a pressure gradient:
Chaotic behavior
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I5 Time series of outflow
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Time series of the time difference between
6 measurements
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Segmentation of the time series:4 segments are defined
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8 Normalized time series plots
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9 Time Series Decomposition

The additive model used is:
Y[t] = Trend [t] + Periodic [t] + Stochastic[t]

The multiplicative model used is:
Y[t] = Trend [t] * Periodic [t] * Stochastic [t]

STL Model (Polynomial regression--variation of the additive model)

There are three components of a time series:
- trend of the overall changing
- Periodic component
- Stochastic -- error/residual/irregular component not explained by
the trend or the periodic value



Graphical Comparison of Decomposition Models:
10 Segment l
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Graphical Comparison of Decomposition Models:
11 Segment 2
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Graphical Comparison of Decomposition Models:
12 Segment 3
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Graphical Comparison of Decomposition Models:
1 3 Segment 4
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14 Comparison of Decompositions

1:1 correlations between the trends
determined using different types of
decomposition
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time series is a MULTIPLICATIVE FUNCTION, which is typical for the nonlinear

dynamics



Time lags calculated for the original, trend, and stochastic
15 components from multiplicative decomposition
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16 1

Time lags (time delays) of multiplicative decomposition
components of the original, trend, and stochastic components of
time series, which were used for calculations of diagnostic
parameters of deterministic chaos and plotting the pseudo-phase
attractors

Segment 1 Segment 2 Segment 3 Segment 4

Original 7 3 2 3

Trend 10 9 20 14

Stochastic 2 5 7 3



Global Embedding Dimension calculated using the False
1 7 Nearest Neighbors Method
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feature of low-dimensional chaos.



Calculations of the spectrum of 3 Local exponents
18 Lyapunov

No zero Lyap exp for original data - there is a random component
Segment 1, Original
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All time series contain a positive Lyapunov exponents, which is a typical feature of
deterministic chaos.
Trends have 1 exponents -0, and the sum of Lyapunov exponents is <0, which are typical
features of deterministic chaos. (Calculations will be performed with 4 Local Lyapunov
exponents).



19 1

Correlation integral (at multiple length scales)

Original Trend Stoch

Segment 1 2.123 2.104 2.466

Segment 2  2.132 2.044 2.360

Segment 3  2.120 2.078 2.346

Segment 4 2.121 2.063 2.601

Correlation dimension and information dimension

lntr dim Local lnf dim 1 Cor dim Local lnf dim 2

Segment 1 8.436 (?) 1.821 1.922 1.913

Segment 2 2.226 2.177 1.719 1.486

Segment 3 2.042 1.943 1.932 1.907

Segment 4 2.256 1.520 1.719 1.404

All diagnostic parameters indicate that all time series data are deterministic chaotic.



20 2D and 3D pseudo-phase attractors Segment I
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21 2D and 3D pseudo-phase attractors Segment 2
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22 2D and 3D pseudo-phase attractors — Segment 3
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23 2D and 3D pseudo-phase attractors Segment 4
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24  Concluding remarks

• The outflow data collected during the gas injection experiment
show that gas migration in the system is deterministically
chaotic.

• The dimension of the nonlinear dynamic system is -3 to 4.
• Next steps:

• Prepare and submit a peer-reviewed paper.
• Develop a set of ODEs (or PDEs) of equations) to describe

chaotic gas migration behaviors.
• Use experimental data for model validation and

verification.
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261 Task C: Update on Hydrology Analysis

o Step 2b — Updated flow modeling of CTD filling and
recovery.

o Used previously generated modeling tools.

o Conducted calibration analysis to match experimental
data in CTD and observation points in borehole
12M133.



27 1 Step2b Pressure Recovery Model Setup

o Domain: 200 m x 300 m x 200 m.

o Grid block size: 2mx2mx 2m.

o Mesh Size: 1,500,000 grid blocks.

o Fracture model with two fracture sets.

O Realization 2 selected.

o Permeability and porosity upscaled to continuum grid.

o Analysis also includes using Realization 9 and a
Homogenous system (k = 10-15 m2)

o PFLOTRAN numerical code was used for
flow simulations.



281 Step2b: DFN Data for Realization 2
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1
Step2b: Upscaled Permeability and Porosity

29 Fields for Realization 2
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30 1 Step2b: Location of Inclined Drift and CTD

Location of Inclined Drift and CTD in domain



I Part I - Step 2b Updated Flow Modeling
o Updated predictions of CTD filling and post-filling
period.

o Run model to steady state with CTD and P1 to P6
pressure values set:
o CTD = 1 atm.

o P1 = 3.822 MPa P2 = 1.286 MPa

o P3 = 1.76 MPa P4 = 3.48 MPa

o P5 = 3.79 MPa P6 = 3.357 MPa

o Run flow model to one year (Start Jan. 7/2016)
using steady state as initial condition.
° Performed calibration analysis by adding injection and
leakage at CTD-Inclined frlunnel side (w-here plug is).

° Applied 0.0 flux boundary condition at other CTD walls.



32 Step2b: Steady State Pressure Distribution
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Step2b: Pressure Distribution at End of
Simulation Time (360 days)
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34 1 Step2b:Predicted Pressure History at CTD

Fractured System: Realization 2
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351 Step2b:Predicted Flow History at CTD:Filling and Leakage Fractured System
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Step2b: Predicted Pressure History at CTD:
" Fractured and Homogenous Systems

Fractured System: Realizations 2 and 9 and Homogenous System
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371 Step2b:Predicted Flow History at CTD:Filling and Leakage Amount
Fractured System: Realizations 2 and 9 and Homogenous System
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Step2b: Predicted Pressure History at
38 Observation Points in Well 12M133
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1 Part I Summary

o Updated flow modeling was conducted for Task C, Step2b.

o The same domain and mesh as previous simulations were
used.

O The CTD-scale domain was enlarged to reduce boundary effects.

o Used Realization 2 fracture permeabikw_ and porosity fields
as base case. Used Realization 9 and Homogenous system
with permeability of 10-15 m2 for sensitivity study.

o Conducted Modeled CTD filling and post-filling with the
addition of injection and leakage -from the CTD.

o Conducted calibrations using experimental CTD pressure vs time
data to determine injection and leakage amount.

O Predicted pressure history in observation points in Well 12M133.
Predictions were reasonable for all except P2 and P3. Better
matching of pressures in P2 and P3 is needed.
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42 Migration of a single fluid inclusion

DKd°AHr a
2yVm

rz 
17,, e RTor

Atir_Lf3Vma2 

Kd oc eRTO -F RT0

Wang (2017)

AE 
D oc eRTo

E

165

16

-KC! Crystal with
:Self Brine Inclusions

T s 65 •C

Diffusion
Conlrol
Limits

H

Load- 4 MPo '

Lood MPa

Slope
(95% Confidence)

• F • 2.010.2
G 0 2 02 0.2 Load —0 Nip,
H • 2.2 ±02

19 ±0.5
F • 0950.4
G 0 1010.3 Load — 4 MPoH • 1310.7

7 .1310.2
(LS/711, .0

o
100

1

I fl.1„0 I 
450

Data from Olander et al. (1982)



43 M igration velocity
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44 Linear stability analysis

x > f (y, t):

v2Ts= o
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45 Perturbation and linearization

T, = T, + (ST,

T1 = T1 + 8T1

m = Tri + (Sm

f = (51'

(ST„. = Ds(s)e4tcos(coy)

87'1 = Ti(s)e4t cos(coy)

öm = iii(s)e4t cos(coy)

(Sf" = f e4t cos(wy)

Solution Salt

x = f (y, t)



46 Result of linear stability analysis

4 kd + Dco
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From individual inclusions to continuum scale fluid
I migration:A modeling scheme Ilr )11
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Possible chaotic behaviors of fluid release from rock
48 salt
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