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Bubble migration under a pressure gradient
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Bubble migration under a pressure gradient:
Chaotic behavior
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s1 Time series of outflow

Outflow
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Time series of the time difference between
measurements
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Segmentation of the time series:4 segments are defined

Outflow vs Time
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s | Normalized time series plots
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91 Time Series Decomposition

The additive model used is:
Y[t] = Trend [t] + Periodic [t] + Stochastic[t]

The multiplicative model used is:
Y[t] = Trend [t] * Periodic [t] * Stochastic [t]

STL Model (Polynomial regression--variation of the additive model)

There are three components of a time series:

- trend of the overall changing

- Periodic component

- Stochastic -- error/residual/irregular component not explained by
the trend or the periodic value




Graphical Comparison of Decomposition Models:
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Graphical Comparison of Decomposition Models:
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Graphical Comparison of Decomposition Models:
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Comparison of Decompositions

1:1 correlations between the trends
determined using different types of

Minimal stochastic component is
determined using the multiplicative
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Time lags calculated for the original, trend, and stochastic
components from multiplicative decomposition
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Time lags (time delays) of multiplicative decomposition
components of the original, trend, and stochastic components of
time series, which were used for calculations of diagnostic
parameters of deterministic chaos and plotting the pseudo-phase
attractors

Segment1l |Segment2 |Segment3 |Segment 4
Original 7 3 2 3
Trend 10 9 20 14
Stochastic 2 5 7 3




Global Embedding Dimension calculated using the False
171 Nearest Neighbors Method
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Embedding dimension of all time series trends is 4, which is a diagnostic
feature of low-dimensional chaos.
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Calculations of the spectrum of 3 Local exponents —
Lyapunov )

No zero Lyap exp for original data - there is a random component
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All time series contain a positive Lyapunov exponents, which is a typical feature of
deterministic chaos.

Trends have 1 exponents ~0, and the sum of Lyapunov exponents is <0, which are typical
features of deterministic chaos. (Calculations will be performed with 4 Local Lyapunov
exponents).
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Correlation integral (at multiple length scales)

i 1)

Original Trend Stoch
Segment 1 2.123 2.104 2.466
Segment 2 2.132 2.044 2.360
Segment 3 2.120 2.078 2.346
Segment 4 2.121 2.063 2.601

|
|

Correlation dimension and information dimension

Intr_dim Local_Inf_dim_1 |Cor_dim [Local_Inf_dim_2
Segment 1 8.436 (?) 1.821 1.922 1.913
Segment 2 2.226 2.177 1.719 1.486
Segment 3 2.042 1.943 1.932 1.907
Segment 4 2.256 1.520 1.719 1.404

All diagnostic parameters indicate that all time series data are deterministic chaotic.
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2D and 3D pseudo-phase attractors — Segment |
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Attractors are plotted using time lags At shown above on the figures and in the table
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x+dt

x+2dt

2D and 3D pseudo-phase attractors — Segment 3
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231 2D and 3D pseudo-phase attractors — Segment 4
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Concluding remarks

« The outflow data collected during the gas injection experiment
show that gas migration in the system is deterministically
chaotic.

* The dimension of the nonlinear dynamic system is ~3 to 4.

* Next steps:

* Prepare and submit a peer-reviewed paper.

» Develop a set of ODEs (or PDEs) of equations) to describe
chaotic gas migration behaviors.

» Use experimental data for model validation and
verification.

dP—A (1 P)
at P K

P

Pn+1 = Apn (1 — py)

Time (days)

FORGE Report D4.17 (Harrington, 2013)
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| Task C: Update on Hydrology Analysis

° Step 2b — Updated flow modeling of CTD filling and

fecovery.
> Used previously generated modeling tools.

> Conducted calibration analysis to match experimental

data in CTD and observation points in borehole
12MI133.




.| Step2b Pressure Recovery Model Setup

o Domain: 200 m x 300 m x 200 m.

> Grid block size: 2 m x 2 m x 2m.
> Mesh Size: 1,500,000 grid blocks.

o Fracture model with two fracture sets.
o Realization 2 selected.

° Permeability and porosity upscaled to continuum grid.

° Analysis also includes using Realization 9 and a
Homogenous system (k = 101> m?)

o PFLLOTRAN numerical code was used for

flow simulations.




28‘ Step2b: DFN Data for Realization

Permeability [m2] > 3.18e-009
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Step2b: Upscaled Permeability and Porosnty
Fields for Realization 2

Upscaled porosity field

b

X

Porosity
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Upscaled permeability field




.| Step2b: Location of Inclined Drift and CTD

Location of Inclined Drift and CTD in domain




_|Part | - Step 2b Updated Flow Modeling

o Updated predictions of CTD filling and post-filling
period.

° Run model to steady state with CTD and P1 to P6

pressure values set:

o CTD =1 atm.

oP1 =3.822 MPa P2 =1.286 MPa
°oP3 =1.76 MPaP4 = 3.48 MPa

°P5 =3.79 MPaP6 = 3.357 MPa

°Run flow model to one year (Start Jan. 7/20106)
using steady state as inittal condition.

° Performed calibration analysis by addin%injection and
leakage at CTD-Inclined Tunnel side (where plug 1s).

> Applied 0.0 flux boundary condition at other CTD walls.




.1 Step2b: Steady State Pressure Distribution

Liquid Pressure [Pa]
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Fractured System: Realization 2




Step2b: Pressure Distribution at End of
=1 Simulation Time (360 days)

Liquid Pressure [Pa]
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#1 Step2b:Predicted Pressure History at CTD
Fractured System: Realization 2

Water pressure (MPa)

4.0

3.5

3.0

2.5

2.0

1.9

1.0

0.5

0.0 !
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

——Monitoring data
—Fractured - R2

\\\\\\\

Time (Days)




Step2b:Predicted Flow History at CTD:
=1 Filling and Leakage — Fractured System
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Step2b: Predicted Pressure History at CTD:

*! Fractured and Homogenous Systems =

Fractured System: Realizations 2 and 9 and Homogenous System
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Step2b:Predicted Flow History at CTD:
7| Filling and Leakage Amount @)

Fractured System: Realizations 2 and 9 and Homogenous System
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Step2b: Predicted Pressure History at

Observation Points in Well 12MI33
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»| Part | Summary
o Updated flow modeling was conducted for Task C, Step2b.

° The same domain and mesh as previous simulations were
used.

> The CTD-scale domain was enlarged to reduce boundary effects.

o Used Realization 2 fracture permeability and porosity fields
as base case. Used Realization 9 and Homogenous system
with permeability of 10-1> m? for sensitivity study.

> Conducted Modeled CTD filling and post-filling with the
addition of injection and leakage %rom the CTD.

> Conducted calibrations using experimental CTD pressure vs time
data to determine injection and leakage amount.

° Predicted pressure history in observation points in Well 12MI33.
Predictions were reasonable for all except P2 and P3. Better
matching of pressures in P2 and P3 is needed.
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2 1 Migration of a single fluid inclusion
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Migration velocity
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s | Linear stability analysis
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s | Perturbation and linearization

T, =T, + 6T, Solution Salt
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Result of linear stability analysis ()
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From individual inclusions to continuum scale fluid
a1 migration: A modeling scheme

dp(x,y,z,t;r s
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Possible chaotic behaviors of fluid release from rock
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Possible chaotic behaviors of fluid release from rock
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