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3 What will be presented

• Nonlinear physics vs. linear physics

O linear instability vs. nonlinear stability

O steady state structures (emergent behavior)

O 2D inverse cascade vs 3D normal cascade
O 2D Navier-Stokes with conserved vorticity and 3D MHD with topological helicity invariant

• Intuitive description of Mallat Scattering Transformation (MST)

• Connection of MST to nonlinear physics
O Enhanced Wigner-Weyl transformation (manifold safe)

O S-matrix (multiple scale, 1 /momentum, scattering cross sections)

• Evidence for nonlinear stability, that is large scale emergent behavior in MagLIF implosions

O mode merger

O helical structure in liner with modes below linear mode with maximal growth rate

O unexpected convergence to double helical structures with extreme CR>200

• Analysis of stagnation morphology with MST

O regression to helical parameters (remarkably linear)

O advanced background subtraction

O quantitative metric of morphology (that is, steady state nonlinear structure or emergent behavior)



4 I Difference between linear and nonlinear physics
p 1/À ,canonical momentum, or quantum numbers

k(p, p') 
f2(p, pi, t) 

fi (p, t) afsource(p) 
Generalized Master Equation at at - I di ft (p' ,t) (1 13) — fi(p,t) 14RP)

linear instability analysis

ft(p,t) fo(p,t) + bf (At) , where b f fo < 1

dispersion relation, 1 , t) = 0 p = p (t)

Po=k+i7

oscillation instability/stability

emergent behavior
(e.g., 3D Kolmogorov scaling)

feq
—5/3

cascade

dissipation

nonlinear steady state analysis

feci(P) = tlimoo  t)

fdp feci (p) k (p, pl) — feq(p')k (pi , p)

large scale self organization
(e.g., 2D Navier-Stokes)

feq

Ofsource (p) 
ot

inverse cascade



Why 3D MHD can exhibit a 2D Navier-Stokes inverse cascade with a resulting large scale,
5 self organized, nonlinear, helical structure?

3D Navier-Stokes when constrained to 2D conserves total
vorticity, relaxes energy while maintaining circulation

ftotal vorticity = V x u d2x

3D MHD when magnetized has total magnetic and cross
helicity as a topological invariants, dissipates energy but
must maintain helical twist

ftotal magnetic helicity = A • B d3 x

ftotal cross helicity = v • B d3 x

•

t

0 •
.0,



6 I What is a Wavelet Transform?

• Wavelet Transform, W

0 Convolutions of a signal with dilated Mother Wavelets, 0,10 (i.e. a bank of band-pass filtered signals)

0 0,1(t'-t) consists of dilations and translations of the Mother Wavelet 0(t)

1-D Wavelet Trasform

x[N(t)=W{x(t)} = x * 0,, = f x(e),Ip,(ti — Ode

1-D Filter Bank
t'

Dilations

À, scale

"N.A.P. "NA.r" 4.\..1-

"\AT -NAT "\Ar

4 4 4tp(t' t)
x(t1)1 j-- t'

\IL
(-

t' >



w
7  The Good, the Bad and the Ugly

Lipschitz Continuous - invariant to small deformations
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8 I Wavelet Transformations can be iterated

Wavelet Transform, W

convolutions of a signal with dilated Mother Wavelets, 0A(t) (i.e. a bank of band-pass filtered signals)

0 0,1(t'-t) consists of dilations and translations of the Mother Wavelet 0(t)

0 because x[Aj(t) is a function of time we can take its Wavelet Transform

Wavelet Transform of a Wavelet Transform

x[Al, A2] (t) =Ix * Ok1 1 * 0A2

t'

A, scale

-NAP' -NA,' 'NAP-

t'

NAr NAr NIX,--
4 4 4 r

/ 
x(t)*IPA1

(Ad tl 
x[Ai](t)

t

1
1

1

x[Ai] (0 *IPA,

/IF x[Ai, A2](t)1 *PA3 t
/   I

x[Al, A2](t) x[Al, A2, A3](t)



9 I The Mallat Scattering Transform (MST)

IMallat 2012; Bruna and Mallat 2013; Mallat 2016]

Mallat Scattering Transform, );12 
TO,

Sm [A AniX = WnifX(til = 111X * V)Ai_  * 0A2  • • • * OArn * 0
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10 I Our systems are diffeomorphisms

• Liouville equation

• BBGKY hierarchy

• Master equation

• Vlasov equation

_ Boltzmann equation

• multi fluid equations

• Navier-Stokes equations

MHD equations

Heat diffusion

• Radiation transport

• Quantum field theory

Quantum mechanics

Maxwell's equations

Newton's equations

etc.

that is, advection by a vector field

0,,(N)
  Yu(N)19W) = 0 Generalized Liouville Equation
Ot

p(n) friT(n) = n-particle distribution form, where T(n) H A wi
i=i

iu(n) w(n) — —dH(n), where

Ii(n) —int —

Tiw(n) _ Ewi
T=,

ap(n)
(n+l) Generalized BBGKY

Ot + Y
U(n) p(n) = —no f

* M i 

Y.(n
nt

) p
HierarchyT 

n

i=1

this is why Lipschitz continuity (invariance under
diffeomorphism, deformation, or advection) is such a big deal

p = statistical distribution or QFT state



11 I Relation of MST to Generalized Master Equation: ideas of Bogoliubov

fi relaxes at dynamic rate = Q
dQ/dt fi evolves at collisional rate =   « SZ

f2 relaxes at collision rate
d2 1 dt2 dQ 1 dt

f2 evolves at correlation rate = «Q2 SZ

pullback of first two equations in BBGKY hierarchy,

Ot
+ {ft, Hi} = —no f dp2 dq2 { f 2 , H12}

Ot
(9f2 r_r 

+ +  
TT

1j2,  H2 1112 f = —n0 f dp3 dq3 {f3, H13 + H23}

can be reduced to, assuming the separation of rates,

(P) I dp' f 2 (p1 p) f 2 (13 ) Generalized Master Equation
Ot

= I cip' f k(11 , 13) — f1(p) k (13, II) k(p, 11) 
f 2(P, P') 

fl(p)

1
1



12 Relation of MST to Generalized Master Equation: manifold safe Wigner-Weyl transformation

Wigner-Weyl transformation takes operators to/from classical phase space (1927).
The Key is a modified Wigner-Weyl transform that is manifold safe.
Need a local Fourier kernel (Mother Wavelet) with a partition of unity (Father Wavelet).

modified Wigner map = W[A] f ds 'Op* (— s) (q + s A q — s) 'Op ( s ) = A(q, p)

modified Wigner function = W[p] = 1217- [ 1 f) (f] = If * '01312 = T/ V f (q,p)

Now we can identify and calculate,

fi(p) = E(T;V[f]) = If * 11)p l * 0 = Si[p]f

12(p, pi) E(w[f f]) = 11f * 'OA * IPp/1* 0 = ks2[P,Mf

This is the Mayer Cluster expansion on the manifold.



13 I MST as the S-matrix: an alternative dynamical interpretation (I)

From the Lagrangian perspective define the generating function:

Z[J] N [df 03)] e(i / so[f(p)]+(i / f c1.13 J(13) f (13)

the connection to the canonical formulation is:

Smaf)) = E(Tp(f (pi) f (pm)) FM) = • • * Opm * 
1 6 6 zir

Z[J] (5 Apo • • • 6 Apro

•
•
•

J =0

1
f (pm)

scattering cross section
generalized Green's function



14 I MST as the S-matrix: an alternative dynamical interpretation (11)

define the effective action through Legendre transform:

Ska(p)] = — ln Z[J] + f dp J(p) c)(13)

expanding in S and (i0 it can be shown that:

Sl( f)) = If *IPA* 0 = E(i(p) F(f 
1  6 Z[J]

)) = Z[J] 6 J (p) J=0
= (pc, (13) =

1  62 Z[J] 
S2(1f)) = * 'OIlf A *'Opil* 0 = E(i(p) f(p') F(f)) = z[j],(5J(p)6J01)

classical action averaged over
fluctuations as a function of
inverse renormalization scale

1
= =

J=0 Tri(13,13')

two state scattering cross section
(scale dependent renormalization
mass) as a function of initial and
final inverse renormalization scale



15 MST and kinetics (that is PDE solution)

• MST is advected with the diffeomorphism of a vector field on a manifold

• leads to a set of "extended enerOes" or topological invariants, that are advected by the flow

• group symmetries can be built into the transformation

• leads to additional constants advected by the flow

• MST is the "pull back" of the set of N particle distribution forms (i.e., density operators) using a modified version of the Wigner-
Weyl transformation (mother wavelet with compact support replaces Fourier kernel, father wavelets are partition of unity)

• Nth order MST is the Nth order Wigner function, that is N-particle correlation function

• BBGKY hierarchy on manifolds gives evolution of the Nth order distribution function as an advection modified by a "collision
operatoe' resulting from interaction with the N+1 particle (advective functional of the N+1 order distribution function)

• therefore, MST is the natural coordinate system to analyze statistical mechanics and kinetics

• MST are constants for a steady state system allowing construction of the canonical ensemble following ideas of Jaynes

• examples of generalized advective-collisional systems are:

- Liouville equation

- Boltzmann equation

- Vlasov equation

- MHD

- Navier-Stokes

- quantum field theory

- quantum mechanics



16 University of Michigan experiments track mode merger of liner structure
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17 Axial magnetic field nonlinearly stabilizes liner perturbations into helical structure

Bz = 0

Unmagnetized

• Horizontal striations
• m = 0 sausage mode

time: 280-380 ns. Ipek = 480 kA

Bz = 1.1 T

Magnetized
• m = 2 helical mode
• Reduced

amplitude
• Reverse B„ striations

also reverse
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18 Look at what is happening to distribution function

feq
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19 Further evidence for nonlinear helical structure of liner, stabilized by axial magnetic field
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Self emission images of stagnation shows axial magnetic field nonlinearly stabilizes plasma
20 into helical structures

no Bz high resolution (15-20 microns)
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21 Regression for parameters of double helical structure from MST
Scattering 
Coefficients 

{Si} = [S1:1
I_Si

Synthetic
Image

011

Linear Regression

1

2

S1 (A1)
3

4 so that

S2 (À1 + A2)

Experimental
Diagnostic 
Image 

Quantitative

{ oi ± crii }

ajj, i_j - error
aii, joi - cross-error

Qualitative
(Synthetic)



22 Regression ensemble: predicted vs actual
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23 Principal components
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24 I Linear regression performance is remarkable
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25 I Fit to experimental image (coated AR9) 4
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26 Comparative Results - coated AR9 vs uncoated AR6
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27 Comparison of Gorgon computer simulation to experimental data
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28 Significant distortion between simulation and experiment

x

sim data

solution: first principal
component of simulation
to data covariance
projected out (effective
background subtraction)

AR = 4.5

note: average interclass
distance is about 10-20, while
the average intraclass distance
is about 2-5 (in the synthetic
dataset)

x x,B >
sim data



29 Quantification of stagnation image morphology

• metric quantifies similarities between simulation and experiment
• enables use of images in UQV
• allows quantified statements to be made about morphology

• for example here we can state:
• little difference between AR6 and AR9 data
• AR6 simulation matches both AR6 and AR9 data
• AR4 data significantly different and matches simulation well

separation_matrix =

1.0000
4.1202
7.6733

3.7279
1.0000
1.7911

confusion_matrix =

0.5998
0.2588
0.1414

0.1914
0.4696
0.3389

2.4980
0.5997
1.0000

0.1753
0.4687
0.3560

P(Cisim ICiata)

Csirn

3

("data



30 I Progress to date and the future

• progress to date

O understanding of physical significance of MST

why it works so well

how it should be used

O regression to helical parameters (remarkably linear)

advanced background subtraction

quantitative metric of morphology (that is, steady state nonlinear structure or emergent behavior)

future

- apply to radiographs as done to stagnation images

derive radiograph dynamics from MST of radiographs

O establish connection between MagLIF implosion parameters and MST of stagnation image

predict the scaling of MagLIF implosion morphology with uncertainty, that is establish
“credible scaling" of morphology


