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3 I What will be presented

» Nonlinear physics vs. linear physics
o linear instability vs. nonlinear stability
o steady state structures (emergent behavior)
o 2D inverse cascade vs 3D normal cascade
o 2D Navier-Stokes with conserved vorticity and 3D MHD with topological helicity invariant
» Intuitive description of Mallat Scattering Transformation (MST)
» Connection of MST to nonlinear physics
> Enhanced Wigner-Weyl transformation (manifold safe)
o S-matrix (multiple scale, 1/momentum, scattering cross sections)
» Bvidence for nonlinear stability, that is large scale emergent behavior in MagLIFF implosions
> mode merger
o helical structure in liner with modes below linear mode with maximal growth rate
o unexpected convergence to double helical structures with extreme CR>200
» Analysis of stagnation morphology with MST
o regression to helical parameters (remarkably linear)
> advanced background subtraction

o quantitative metric of morphology (that is, steady state nonlinear structure or emergent behavior)



4‘ Difference between linear and nonlinear physics

p = 1/X ,canonical momentum, or quantum numbers

Generalized Master Equation

8f1(p, t) o afsource(p) o
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linear instability analysis

filp,t) = fo(p,t) +6f(p,t) , where df/fo < 1

= dispersion relation, D(p,t) = 0 = p = po(t)

po =k + 1y
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oscillation/ instability/stability

\nonlinear steady state analysis

fea(p) = lim f1(p,1)

/ dp’ feq(p) k(p;p") — feq(@') k(p', p)
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emergent behavior
(e.g., 3D Kolmogorov scaling)
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large scale self organization
(e.g., 2AD Navier-Stokes)
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Why 3D MHD can exhibit a 2D Navier-Stokes inverse cascade with a resulting large scale,
5 § self organized, nonlinear, helical structure?

3D Navier-Stokes when constrained to 2D conserves total 1,
vorticity, relaxes energy while maintaining circulation ‘

total vorticity = / V X ud’x bl .:.‘j:.‘

3D MHD when magnetized has total magnetic and cross
helicity as a topological invariants, dissipates energy but
must maintain helical twist

n“’w' -

T

total magnetic helicity = / A-Bdx

i
-

total cross helicity = / v-B dx




6 | What is a Wavelet Transform?

» Wavelet Transform, W

> Convolutions of a signal with dilated Mother Wavelets, ¢.(2) (i.e. a bank of band-pass filtered signals)

o thy(#-#) consists of dilations and translations of the Mother Wavelet ¢(?)

1-D Wavelet Trasform
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1-D Filter Bank
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7 1 The Good, the Bad and the Ugly Lipschitz
Lipschitz Continuous - invariant to small deformations Continuous
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Wavelet Transformations can be iterated

Wavelet Transform, W

o convolutions of a signal with dilated Mother Wavelets, ¢,(?) (i.e. a bank of band-pass filtered signals) ‘
o (") consists of dilations and translations of the Mother Wavelet ¢(?) F
]

° because x/A/(?) is a function of time we can take its Wavelet Transform

Wavelet Transform of a Wavelet Transform
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9 I The Mallat Scattering Transform (MST)
[Mallat 2012; Bruna and Mallat 2013; Mallat 2016]
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Our systems are diffeomorphisms

o Liouville equation

» BBGKY hierarchy

» Master equation

» Vlasov equation
 Boltzmann equation

» multi fluid equations
» Navier-Stokes equations
» MHD equations

» Heat diffusion

» Radiation transport

o Quantum field theory
» Quantum mechanics
» Maxwell’s equations

» Newton’s equations

o ctc.

that is, advection by a vector field

(N)
8p8t + Z.p™) =0  Generalized Liouville Equation
p( = f,7™ = n-particle distribution form, where 7" H Aw;
i,,(m) W™ = —dH("), where w( = Zwi
dp (n) (n+1) Generalized BBGKY
+ ZLymp = —ng L n)p .
ot g Wint Hierarchy
fr?t) = Zuz n+1

this is why Lipschitz continuity (invariance under

diffeomorphism, deformation, or advection) is such a big deal

p = statistical distribution or QFT state




11 I Relation of MST to Generalized Master Equation: ideas of Bogoliubov

f1 relaxes at dynamic rate = (2

fl evolves at collisional rate =

0/ dt

Q
Q<<

fo relaxes at collision rate

fo evolves at correlation rate =

d*Q/dt*  dQ/dt

g < <0

pullback of first two equations in BBGKY hierarchy,

df1

ot
Of2
ot

— +{fi, Hi} = —no/dm dqge { f2, Hi2}

—— +{fo, Hi + Hy + H12} = —no/dm dgs { fs, Hi3 + Has}

can be reduced to, assuming the separation of rates,

0f 1 (P)
ot

- / dp’ f2(p',p) — f2(p,p’)  Generalized Master Equation

= /dp’ AW k@, p) — f1(p) k(p, D) k(p,p') = fo(p.P')



12 § Relation of MST to Generalized Master Equation: manifold safe Wigner-Weyl transformation

Wigner-Weyl transformation takes operators to/from classical phase space (1927).
The Key is a modified Wigner-Weyl transform that is manifold safe.
Need a local Fourier kernel (Mother Wavelet) with a partition of unity (Father Wavelet).

modified Wigner map = W[A] = /ds Py (—5) <q + s

>¢p(8) = A(q,p)

modified Wigner function = W[p] = W[|f) (f|] = |f * ¥p|? = Wf(Q7p)

Now we can identify and calculate,

fi(p) = E(WIf]) = |f > ¥p| *x ¢ = Si[p]f
Fo0,0') = EWIFf]) = |f * ¥p| x thp| % & = Sa[p, 0]

This is the Mayer Cluster expansion on the manifold.



131 MST as the S-matrix: an alternative dynamical interpretation (l)

From the Lagrangian perspective define the generating function:
Z|J] = N/ [df (p)] (/™) Solf @)+(i/R) [ dp T (p) f(p)

the connection to the canonical formulation is:

S (1)) =E(Tp(F(p1) - F(om)) F(£)) = ||f *x topy |-+ * Up,, | % ¢ = Z[lj] 5pr1) 5J(i9m)

F(p1) f(Pr+1)
& / [
o o
o -
f(Pn) F(pm)

scattering cross section
generalized Green'’s function




14 1 MST as the S-matrix: an alternative dynamical interpretation (ll)

define the effective action through Legendre transform:
Slew] =~ w211+ [ dpI(p) (o)

expanding in S and ¥ it can be shown that:

. 1 6Z[J] classical action averaged over _
S1(1f)) = |f x| x 0 = E(f(p) F(f)) = = ¢o(p) = fluctuations as a function of = fi(p)
Z|J]6J(p) | =0 inverse renormalization scale
1 82Z[J] 1

So1£) = I * il by |2 6 = BU W) SO FUD = 5550556 | = o)

two state scattering cross section

(scale dependent renormalization  _ Fap, ')
mass) as a function of initial and — 2\ P
final inverse renormalization scale
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MST and kinetics (that is PDE solution)

» MST is advected with the diffeomorphism of a vector field on a manifold

o leads to a set of “extended energies” or topological invariants, that are advected by the flow
» group symmetries can be built into the transformation

o leads to additional constants advected by the flow

o MST is the “pull back™ of the set of N particle distribution forms (i.e., density operators) using a modified version of the Wigner-
Weyl transformation (mother wavelet with compact support replaces Fourier kernel, father wavelets are partition of unity)

o Nth order MST is the Nth order Wigner function, that is N-particle correlation function

> BBGKY hierarchy on manifolds gives evolution of the Nth order distribution function as an advection modified by a “collision
operator” resulting from interaction with the N+1 particle (advective functional of the N+1 order distribution function)

o therefore, MST is the natural coordinate system to analyze statistical mechanics and kinetics
o MST are constants for a steady state system allowing construction of the canonical ensemble following ideas of Jaynes
o examples of generalized advective-collisional systems are:
- Liouville equation
- Boltzmann equation
- Vlasov equation
- MHD
- Navier-Stokes
- quantum field theory
- quantum mechanics
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17 I Axial magnetic field nonlinearly stabilizes liner perturbations into helical structure T
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Further evidence for nonlinear helical structure of liner, stabilized by axial magnetic field
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Self emission images of stagnation shows axial magnetic field nonlinearly stabilizes plasma
20 ¥ into helical structures
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Regression for parameters of double helical structure from MST

Linear Regression
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Regression ensemble: predicted vs actual
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23 I Principal components
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24 | Linear regression performance is
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25 | Fit to experimental image (coated AR9) . gZaz2e , ,, , Fegceszezs
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26 I Comparative Results - coated AR9 vs uncoated ARG
23236 - Coated AR9 73289 - Uncoated AR6
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Comparison of Gorgon
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28 | Significant distortion between simulation and experiment
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29 I Quantification of stagnation image morphology

* metric quantifies similarities between simulation and experiment
» enables use of images in UQV
+ allows quantified statements to be made about morphology
 for example here we can state:
« little difference between AR6 and AR9 data
« ARG simulation matches both AR6 and AR9 data
+ AR4 data significantly different and matches simulation well

P(Csim |Cda.ta)

confusion matrix

separation_matrix =

1.0000 3.7279 .4980
4.1202 1.0000 . 5997
7.6733 1.7911 1.0000

SN

confusion_matrix = - P
0.5998 0.1914 0.1753
0.2588 0.4696 0.4687

0.1414  ©0.3389  0.3560 — Cd t
ata



30 1 Progress to date and the future

o progress to date
o understanding of physical significance of MST
- why it works so well
- how it should be used
o regression to helical parameters (remarkably linear)
o advanced background subtraction
o quantitative metric of morphology (that 1s, steady state nonlinear structure or emergent behavior)
» future
o apply to radiographs as done to stagnation images
> dertve radiograph dynamics from MST of radiographs
o establish connection between MagL.IF implosion parameters and MST of stagnation image

- predict the scaling of MagLIF implosion morphology with uncertainty, that is establish
“credible scaling” of morphology



