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Project vision

Negative thermal expansion material design

Building blocks
Nanomaterial deS|gn

OO @

. . .- Zeolites
‘ ¢ -_ - Metal-orgamc

-~ frameworks

Zero thermal expansion

X

-




Fundamental understanding

Material interfaces Constrained materials Material responses
Thin films and composite materials Nanoscale devices Sensors and precision instruments

Poor adhesion Strong adhesion Cracking Microcantilever

Stassen, Burtch, Talin, Falcaro, Allendorf, Ameloot, Chem. Soc. Rev. 2017, 46, 3185.

Negative thermal expansion (NTE) application opportunities

Composite materials Additive manufacturing

Mirror

Doping into PTE matrix to produce O—

e Overa” ZTE Liquid Polymer
+ Better match CTE at interface -

Platform

Material jetting Stereolithography
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Positive thermal expansion
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Coefficient of thermal expansion (CTE)
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Negative thermal expansion in solids

Vibrational mechanisms of NTE

Transverse motions Librational motions

6 1. Barrera, Bruno, Barron, Allan. “Negative thermal expansion,” J. Phys. Condens. Matter, 2005.



Benchmark material

ZrW,0q4

Negative thermal expansion from 0.3K to
1050K in ZrW,0g
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Limitations

Pale gray = ZrOq | (1) Limited NTE tupability |
Dark gray = WO, (2) Compatibility with PTE matrix



MOF opportunities
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SBU Ligands

MOF

(1) Tunable structural chemistry
(2) Tailorable surface chemistry

(3) Low density (< 1 g/cm3)
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biotin-COOH

Rijnaarts et al. Chem. Eur. J. 2015, 21, 10296.

Coordination modulation

“‘growth” vs. “capping” ligands
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Negative Thermal Expansion in MOFs

IRMOF-1/MOF-5

Dubbeldam, Walton, Ellis, Snurr Angew. Chemie, 2007, 46, 4496.
Han, Goddard, J. Phys. Chem. C. 2007, 111, 15185.
Greathouse, Allendorf J. Phys. Chem. C. 2008, 112, 5795.
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Wu et al., Angew. Chemie, 2008, 120, 9061.




Characterization approach

Complimentary experiments and molecular modeling
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Quantifying thermal expansion: XRD

2D detector Transmission mode powder diffraction

Debye-
Scherrer

Diffraction Cone from d,

Rings
\ Incident Beam
" D‘EI< ————— ———————— <——————
........................... B e G LT
B L S - : 'D g‘ _____ o e A .
............................. S 4 o IS
' O "( ————— —————— —~——————
capillary
F
(1)
ua
2
o
| I Refinement of temperature-dependent lattice constants
I T T T T T
:
) fi hot =}
§ I §
& i >
= i <
s i S|
z — z
e I 2
2 == £
5 Ty 15 20 5 30 cold 7 75 8 85 9

12 Degrees (20) Degrees (20)



Systems for thermal expansion understanding

Pillared DABCO-based MOFs

~ Ligand sterics Metal identity
Constant topology, node geometry, metal species ~ Constant topology, node geometry, and ligand C
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Comparing models to experiments

Thermal expansion predictions from molecular mechanics (prior to experiment)
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More accurate parameterization approaches

Enabling more accurate thermal expansion predictions

[ Crystallographic positions |T Novel parameterization approach
ot 11AAItIONAlI @approaches Problematic for low frequency modes
:Quantum mechanics : . . .
fed o Bottom-up (cluster-based) ————> ¢ Neglect periodicity
* Generic F.F. libraries > + Not parametrized for inorganics
| Clasical mechanics {+——
@m: Top-down approach’ Periodic mechanical behavior captured
[ comparectasictensors | ] Fit classical model to reproduce ab . Accurately captures low frequency modes
1 C,ab initio) = C,(classical) initio elastic tensor s Identlfy missing functional forms

Done

Heinen, Burtch, Walton, Dubbeldam, Journal of Chemical Theory and Computation, 2017, 13 (8), 3722-3730.
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Fine-tuning thermal expansion
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Discrete CTE changes

?

Lattice parameters

<

0 Temperature

S$21493s duisealdag

MOF solid solutions: precisely tailored CTE control

L T L T * T L) T L T v T ¥ T ® T s T
210 220 230 240 250 260 270 280 290
Temperature(K)

TM-BDC
X=1
PTE

COOH
e
A SA——
CooH 0 —
Wji”“ 0 ==
-
| YJ\
COOH
coon Multiple ligands within a single phase
I
A
& Zn,(BDC),.,,(TM-BDC),,(DABCO)
COOH 10.95 _— /‘ffo"
T s, 3 :::;g? [
= —0—x=.364 r
ey T ona oo
T — - — ~ —0—x=1.0
~1093Je— o S ——
s T Wy — T —
o —e—__ B
> ——g.__ —
T 10.92 4 T —e— g
£
(0]
10.91 //ﬂ‘xn/‘“h\ﬂ~ —e— o )coon-c
o _og" 00 ¢ 0 ¢ 0o o 8§ AN
PSP —
10904 | o ot T ° L :J\'j\
COOH



NTE translates to the particle length-scale

Diffraction results

Crystallographic changes (atomic-scale)
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Characterization approach

Refinement of temperature-dependent lattice constants
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Thermomechanical analysis results
Powder height changes (macro-scale)
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Composite material studies

Incorporating NTE additives as material feeds for 3D printing technologies

Mirror Laser

Liquid adhesive supply Inkjet print head

7

Powder supply A A / Built parts
- n )
. . . Platform
Material jetting Binder jetting Stereolithography

Burtch. Method for Tuning Thermal Expansion in an Additive Manufacturing Feedstock Material. U.S. Patent Serial No. 15/717,265 filed Sept. 27, 2017.
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MOFs as an emergent NTE material class
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Conclusions

MOFs as an emergent NTE material class
» Precisely tailored NTE characteristics

 NTE exists at the crystallographic and particle scale
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