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Project vision

Negative thermal expansion material design

Building blocks
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Nanomaterial design

Zeolites
Metal-organic
frameworks

Zero thermal expansion
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Fundamental understanding

Material interfaces
Thin films and composite materials

Poor adhesion Strong adhesion

Constrained materials
Nanoscale devices

Cracking

Material responses
Sensors and precision instruments

Microcantilever

Stassen, Burtch, Talin, Falcaro, Allendorf, Ameloot, Chem. Soc. Rev. 2017, 46, 3185.

Negative thermal expansion (NTE) application opportunities

Composite materials

Doping into PTE matrix to produce

• Overall ZTE
• Better match CTE at interface

Additive manufacturing
Mi".0

Liquid Ptlynner

Laser

Ptatfprr7

Elevator

Material jetting Stereolithography

Sweeper
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Positive thermal expansion
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Silicon: 2.6 ppm/K

Copper: 17 ppm/K

Gold: 13 ppm/K

1. Swenson, J. Phys. Chem. Ref. Data 1983, 12, 179.
4 2. Buffington, R.; Latimer, W. Coefficients Expans. 1926, 48, 2305.



Negative thermal expansion in solids

Vibrational mechanisms of NTE1
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Transverse motions Librational motions

6 1. Barrera, Bruno, Barron, Allan. "Negative thermal expansion," J. Phys. Condens. Matter, 2005.



Benchmark material

ZrW208

Pale gray = Zr06
Dark gray = VV04

Negative thermal expansion from 0.3K to
1050K in ZrW208

Mary, Evans, Sleight, Vogt. Science, 1996.

Limitations
(1) Limited NTE tunability
(2) Compatibility with PTE matrix



MOF opportunities
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SBU Ligands

(1) Tunable structural chemistry

(2) Tailorable surface chemistry

(3) Low density (< 1 g/cm3)
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Rijnaarts et al. Chem. Eur. J. 2015, 21, 10296.

Coordination modulation

"growth" vs. "capping" ligands
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Negative Thermal Expansion in MOFs

IRMOF-1/MOF-5
Dubbeldam, Walton, Ellis, Snurr Angew. Chemie, 2007, 46, 4496.

Han, Goddard, J. Phys. Chem. C. 2007, 111, 15185.
Greathouse, Allendorf J. Phys. Chem. C. 2008, 112, 5795.

00C—

HKUST-1/Cu-BTC
Wu et al., Angew. Chemie, 2008, 120, 9061.
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Characterization approach
Complimentary experiments and molecular modeling

Laboratory
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Molecular modeling

• Classical force fields
• Quantum mechanics
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Synchrotron

VT experiments

• Diffraction
• Total scattering
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CTE measurements
Bulk or composite

material
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Quantifying thermal expansion: XRD
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Refinement of temperature-dependent lattice constants
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Systems for thermal expansion understanding

13

Pillared DABCO-based MOFs
Ligand sterics

Constant topology, node geometry, metal species

• =
Zn2(CO2)4

1= N

N
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Metal identity
Constant topology, node geometry, and ligand

• =
M2(CO2)4

M = Zn Cu Co Ni 9"9
1 2 3 4

Topology effects
Constant metal cluster geometry, metal identity, and ligand

•
VS.

•

Square grid Kagome network

• =
N i 2(C 02 )4

1

Guest species

IRMOF-1

vs.
He CO2

•
Zn40(CO2)

Ligand length
Constant topology, node geometry, metal species

Zr6O8

VS.

9'9
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Decreasing interaction
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Average CTE values from "1 0 C to 100°C
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Comparing models to experiments

Thermal expansion predictions from molecular mechanics (prior to experiment)
11
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More accurate parameterization approaches

Enabling more accurate thermal expansion predictions

Crystallog aphic positions

Quantum mechanics

•

! Classical mechanics .1 

C,1(ab
Siclassical) 1

Compare elastic tensors

I Cjab initio). cficlassicall

Done 1

Novel parameterization approach

Traditional approaches Problematic for low frequency modes
• Bottom-up (cluster-based)-. • Neglect periodicity
• Generic F.F. libraries • Not parametrized for inorganics

Top-down approach1
Fit classical model to reproduce ab
initio elastic tensor

Periodic mechanical behavior captured
• Accurately captures low frequency modes
• Identify missing functional forms

Heinen, Burtch, Walton, Dubbeldam, Journal of Chemical Theory and Computation, 2017, 13 (8), 3722-3730.
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Fine-tuning thermal expansion
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Discrete CTE changes
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MOF solid solutions: precisely tailored CTE control
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NTE translates to the particle length-scale
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Diffraction results
Crystallographic changes (atomic-scale)
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Characterization approach 

Refinement of temperature-dependent lattice constants
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Thermomechanical analysis results
Powder height changes (macro-scale)
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Composite material studies

Incorporating NTE additives as material feeds for 3D printing technologies

Material jetting

Liquid adhesive supply

N L
conoesent

z kjet print head

Leveling roller

Built parts
Powder supply

_ Powder bed

- Build platform

Binder jetting Stereolithography

Burtch. Method for Tuning Thermal Expansion in an Additive Manufacturing Feedstock Material. U.S. Patent Serial No. 15/717,265 filed Sept. 27, 2017.
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MOFs as an emergent NTE material class
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Metal-organic Zirconium tungstate Metal cyanides —

frameworks family

Zeolites Zirconium vanadate Prussian blue

family analogues

Metal oxides Metal fluorides

 • 

• •

• 
 .
•

a 
♦ • Cu-BTC

4

• 
Ui0-66(Zr) •

Ui0-67(Zr)

• •

 • 
IRMOF-1

• 

-50

-60

-70 
80 
-90 

-100

-125

DUT- 49

 •

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Temperature (K)



 I

Conclusions

MOFs as an emergent NTE material class

• Precisely tailored NTE characteristics

• NTE exists at the crystallographic and particle scale
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