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Integration of Sensors and Fluidics

Ribbon Cable
Pm 1 Heater 2

— Reference, counter, and working
ctrodes MHE 4 valve actuation
eaters per channel
— Low noise (<30 fA at 0.25V)
*«  Can be converted to an ASIC
(Application Specific Circuit)
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;,.' Pyrolyzed Photoresist Films

Photopatternable Surface

Carbon Array for Microfluidics

Interdigitated Electrode

100 Electrode Array

| Contact pads Leads
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Working Electrodes

silicon

Fabricated by Cody Washburn

Richard McCreery
Chem Rev.,108, 2646 (2008)
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fixlure wath platinum referance and haaters

Fabricated by Thayne Edwards
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£ et Pyrolyzed Photoresist Films

McCreery, Kinoshita, Madou et al
J. Of Electrochem. Soc.
145 (1998) 2314 & 147 (2000) 277

Film Preparation
Photoresist spin coated onto fused silica or quartz; Pyrolyzed at 1050 °C for 1 hour in 5% N,/ 95% H,
creates a predominately concucting carbon surface by driving off non-carbonaceous species with
a high degree of hydrogen termination
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400 200 ] =200 =4[M) =00
Potential, mV vs Ag/AgCI

Sp2 > Sp? Carbon |
ReSlSlthIty ~102-103Q -cm Richard McCreery

Chem Rev.,108, 2646 (2008)

1-5 % Oxygen
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yer Interference Lithography

By using 3-beam interference, arrays

with hexagonal symmetry can be

generated, while with 4 beams, arrays

with rectangular symmetry are
generated. Hence, by superimposing
different beam combinations,

different patterns are made possible.
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"% Interference Lithography in Photoresist
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CHV

10.00 kV|[2.13 pm| 5.1 mm
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3D Porous Carbon Electrode
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120 000 x
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SE
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tilt | 500 nm
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Advantages of 3D structures
* Higher surface areas
* Enhanced Diffusion of fuels and analytes

US Patent 8,349,547 B1
Small, 2009, 24, 2792-2796
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hH.p:f';‘www.doub|e—d'—ro'of,i,ngtom/geherator/ddﬁﬁluads? ;s
"~ Hershey_Eastern_Distribution_Center.JPG

Base/ft’ Total/ft’
Hershey 1,189,910 1,189,910
Burj Dubai 33,600 3,700,000

Bruce Dunn et.al.

Chem. Rev. 104, 4463 (2004),

Electrochem. and Solid-State Letts. 7, A435 (2004)
Electrochem. Comm. 5, 120 (2003).
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Porous Carbons

Traditional Porous Carbons

r ANy -

Limitations

Toc e 12
T = tortuosity
€ = pore size

Bruggeman relationship

Advantages of our 3D structures
 High surface areas
» Enhanced Diffusion of fuels and analytes
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oo Comparison of 2D versus 3D Electrodes
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e
L Increased Mass Transport

Microelectrode Behavior with Macroscopic Electrode!

-3.4
" Electrode Diffusion profiles
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Hemispherical diffusion is indicative of increased mass transport kinetics.
Greater diffusion profiles throughout the 3D structures should translate to higher signals for detection
of analytes and higher energy densities for power devices!
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Conducting Polymers
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Conducting Polymer Deposition

30 sec Thlophene 60 sec Thlophene
! , ‘

*Conducting polymers are widely used
in ultracapacitors and electrochromic
devices.

*The morphology of polymer films
is greatly affected by mass transport
during deposition

*Microelectrodes usually produce
smooth uniform films

*Macroelectrodes produce highly
asymmetrical aggregates

*Deposition onto the 3D porous
carbon results in uncharacteristically
smooth films because of the radial
diffusion of monomer molecules
during deposition




Film Morphology

10 mM Thiophene, 0.1M
Bu,NBF,,
45 sec at -0.6V
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Controlling Pore Size

CV Deposition

Current/ mA
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Capacitor Performance

Thin Film

Thick Film

0.04

Thin films show efficient doping-undoping properties (better performance) over thick films which
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experience diffusion limitations for anions to migrate through the films
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Nanoparticle
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Depositions

T
¥

.

o
b

NP Deposition:
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o el al 90:10 % (v:v)

.t o SSSENES Lo R e
W, HV HFW WD det mag |mode | tilt — 500 nNm ——
237 110.00 kV|2.56 um |49 mm | TLD|99980x| SE |0°

Nanoparticle modifications are used for both catalysis and biomolecular supports
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Applications
Ultracapacitor

S ACS Applied Materials and Interfaces 2(11): 3179-3184 (2010) H yd rog e n Ad SO rptio n Electroanalysis 24(1): 153-157 (2012)

°
s 3 s
H 8

Current/ mA
5

Current/ mA

8 X y
Potential / V

ent/mAs V'

Normalized Curre

1-200mvs’

4,010

Current / A

0.'0
E/V vs. SCE

T T
0.4 06

Potential /W
S

—
-
E
=
=
=
=)
=
= -
o

Sandia
m National

Laboratories




Electrochemical Control of Nanoparticle Morphology
Biosensors and Bioelectronics 26(8): 3641-3646 (2011)

D det mag mode | tilt | 00 nm HV HFW WD det
am | TLD | 100 000x| SE |0 *110.00 kV|1.28 pm| 5.1 mm | TLD
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Nanoparticle shape has proound [ ic propertie. T National
Highly faceted nanocrystals often exhibit remarkably improved catalysis CRNERISS




Catalytic Glucose Detection

0.5 0.0
E/V vs. Ag/AgCl
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Linear scan voltammograms of a Pd-modified 3D carbon electrode in 0.1 M NaOH + x M glucose. Pd deposition: 100s, Scan rate: 20 mV/s.
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(A) Plots of corresponding current and peak potential vs. glucose concetration. Pd deposition: 100 se
scan rate = 20 mv/sec and (B) amperometric response towards successive additions of glucose

in 0.1M NaOH with continuous stirring.
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“Solid State lon Selective Electrodes

K* Solid State lon Selective Electrode
Three dips into ISE cocktail of (1% valinomycin, 32.8% PVC, 66% o-
NPOE and 0.2% KTFPB) followed by 24 hours of drying. Mixture
repeated from J. Ping et al. Electrochemistry Communications 13
(2011) 1529-1532.
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~ “solid State lon Selective Electrodes
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3D Graphene

Graphene Preparation
1. Top Down Approach

Carbon precipitates
onto surface

£ 1 r B ool L
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(gaseous carbon source precipitates graphene onto substrate)

Carbonacecus gas

2. Bottom-Up Approach

&F—_—

Carbon Source Nickel Coating Annealing

(carbon diffuses up through metal catalyst to form graphene )
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Nl-Coatmg and Annealmg

‘v




3D Graphene Structures?
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Thomas Beechem

Complete conversion from sp’ to sp-

ACS Nano 6(4): 35730-3579 (2012)
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Core-Shell Structures

Journal of

Journal of Materials Chemistry 22(45): 23749-23754 (2012)

Materlals Chemlstry

Volume 22 | Number 45 IDxmbevm |Pa9es1m9244
L g

| 0959-9428(2012)22:45:1-8
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Cross Section
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Mechanism
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Detection of ascorbic acid, uric acid, and dopamine
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Can we make graphene into functional
three dimensional shapes that
preserve/enhance its inherent benefits or
result in new beneficial properties?
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Summary

* 3D porous carbon electrodes can be used to
enhance mass transport of fuels and analytes for
improved sensors and battery applications

* 3D graphene opens the door for a new
generation of novel materials that can impact
sensors, batteries, and electronics
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Lithographically Defined Three Dimensional Graphene Electrodes

X. Xiao, D.B. Burckel, Thomas Beechem, Joseph
Michaels, C.M. Washburn, S.M. Brozik, D.R. Wheeler

Sandia National Laboratories
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