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Pyrolyzed Photoresist Films
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Pyrolyzed Photoresist Films
McCreery, Kinoshita, Madou et al

J. Of Electrochem. Soc.

145 (1998) 2314 & 147 (2000) 277

Film Preparation 
Photoresist spin coated onto fused silica or quartz; Pyrolyzed at 1050 °C for 1 hour in 5% N2 / 95% H2
creates a predominately concucting carbon surface by driving off non-carbonaceous species with

a high degree of hydrogen termination
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Interference Lithography
(Bruce Burckel)

By using 3-beam interference, arrays

with hexagonal symmetry can be

generated, while with 4 beams, arrays

with rectangular symmetry are

generated. Hence, by superimposing

different beam combinations,

different patterns are made possible.
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Interference Lithography in Photoresist

200 nm

H
EHT = 2.00 kV WI3 = 4 mm Signal A = InLens

Fabricated by Bruce Burckel
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3D Porous Carbon Electrodes

Advantages of 3D structures 
• Higher surface areas
• Enhanced Diffusion of fuels and analytes

US Patent 8,349,547 B1

Small, 2009, 24, 2792-2796
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Mass Transport
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Porous Carbons
Traditional Porous Carbons

416•- -71, :i;.14..4%, 7 4OP
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Our Porous Carbons

Limitations

T oC c-"2
T = tortuosity
c = pore size

Bruggeman relationship

Advantages of our 3D structures 
• High surface areas
• Enhanced Diffusion of fuels and analytes
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nuItirait Comparison of 2D versus 3D Electrodes

Blue: Pd 3D
Red: Pd 2D
Black: Pd/GCE
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P"tt, Increased Mass Transport
Microelectrode Behavior with Macroscopic Electrode!
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Hemispherical diffusion is indicative of increased mass transport kinetics.
Greater diffusion profiles throughout the 3D structures should translate to higher signals for detection

of analytes and higher energy densities for power devices!

ACS Applied Materials and Interfaces 2(11): 3179-3184 (2010)
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Conducting Polymers
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FIALOW
1-‘401.0 Conducting Polymer Deposition

30 sec Thiophene I 60 sec Thiophene
imeibwrr Ito foti wI mi. m•Conducting polymers are widely used

in ultracapacitors and electrochromic
devices.

•The morphology of polymer films
is greatly affected by mass transport
during deposition

•Microelectrodes usually produce
smooth uniform films

•Macroelectrodes produce highly
asymmetrical aggregates

•Deposition onto the 3D porous
carbon results in uncharacteristically
smooth films because of the radial
diffusion of monomer molecules
during deposition
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Film Morphology

A

10 mM Thiophene, 0.1M
Bu4NBF4,
45 sec at -0.6V

Bithiophene Bare
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Prr2IPT., Controlling, Pore Size
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Parb Capacitor Performance
Thin Film Thick Film
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Thin Film Thick Film

Thin films show efficient doping-undoping properties (better performance) over thick films which
experience diffusion limitations for anions to migrate through the films
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Nanoparticle Depositions

NP Deposition:
10mM AgNO3
1 min at -0.3V
Acetonitrile/H30
90:10 % (v:v)

Nanoparticle modifications are used for both catalysis and biomolecular su orts
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4,440.1416
Ultracapacitors

•
Applications

ACS Apphed Materials and Interfaces 2(11): 3179-3184 (2010) H yd ro g e n Adsorption Electroanalysis 24(1): 153-157 (2012)

Glucose Sensors Biosensors and Bioelectronics 26(8): 3641-3646 (2011) Pt-based F u e l Cells Electrochem Comm 13(8): 856-860 (2011)

2  ,
0.5 0:0 -0.5
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Pd-based Fuel Cells Journal of Materials Chemistry A 1 (1): 1639-1645 (2013)

(29
 Sandia
National
Laboratories



11,101P Electrochemical Control of Nanoparticle Morphology
Biosensors and Bioelectronics 26(8): 3641-3646 (2011)
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Nanoparticle shape has a profound impact on its catalytic properties.
Highly faceted nanocrystals often exhibit remarkably improved catalysis
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"tiro Catalytic Glucose Detection
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Linear scan voltarmnograrns of a Pd-rnodified 3D carbon electrode in 0.1 M NaOH + x M glucose. Pd deposition: 100s, Scan rate: 20 rnV/s.
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Three dips into ISE cocktail of (1% valinomycin, 32.8% PVC, 66% o-
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Solid State lon Selective Electrodes
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3D Graphene
Graphene Preparation

1. Top Down Approach
a

Ca toreac=cus gas.

111.1F 

NI

PS44

Carbon precipitates
onto sur face

(gaseous carbon source precipitates graphene onto substrate)

2. Bottom-Up Approach

Carbon Source Nickel Coating Annealing

(carbon diffuses up through metal catalyst to form graphene )
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20

3D Graphene Structures?
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Core-Shell Structures

Journal of
Materials Chemistry
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Cross Section
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echanism
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Mechanism
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"tIP''`. Electrochemical Results
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Detection of ascorbic acid, uric acid, and dopamine
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3D porous graphene
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Can we make graphene into functional

three dimensional shapes that

preserve/enhance its inherent benefits or

result in new beneficial properties?
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Summary

• 3D porous carbon electrodes can be used to
enhance mass transport of fuels and analytes for
improved sensors and battery applications

• 3D graphene opens the door for a new
generation of novel materials that can impact
sensors, batteries, and electronics
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Lithographically Defined Three Dimensional Graphene Electrodes

X. Xiao, D.B. Burckel, Thomas Beechem, Joseph
Michaels, C.M. Washburn, S.M. Brozik, D.R. Wheeler
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