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* DCON Tests at Celilo
* Tuning of DCON Gain (May 23, 2018)
* Implement +/- 0.2 mHz dead-zone (May 23, 2018)
* Events during “Walkaway” Test (May 24, 2018 — June 21, 2018)

* PMU Latencies
 Characterization of latencies
* Impact on controller

« PMU Data Considerations
* Time alignment
» Corrupted data

 Other Control Architectures
* Distributed control
» Other sources of power injection



* Poorly damped inter-
area oscillations in
congested
transmission
corridors can lead to
system breakups and
widespread outages

* To prevent this,
power flows are
constrained well
below rated
transmission limits
= inefficient use of
expensive capital
investments

 Feedback control
using real-time PMU
data: First
demonstration of
this in North America

* Real power injection
by modulating PDCI
power

« Supervisory system
integrated with
controller for
ensuring “Do No
Harm” to grid
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* Improved grid
reliability

« Additional contingency
for stressed grid
conditions

 Avoided costs from a
system-wide blackout

 Reduced or postponed
need for new
transmission capacity

 Enables higher power
flows on congested
transmission corridors
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Based on 1970s BPA experiments on PDCI

later shown to have destabilized BC-US mode

Revived in 2007 — 2012 by BPA with Montana
Tech leveraging PMU deployments in WECC

Current project launched in June 2013 as a
collaboration of SNL, MT, BPA, and DOE to
develop and demonstrate damping control

Phase 1 (June 2013 — Sept 2015)

» Controller design based on extensive
simulation studies & eigensystem analysis

* Open-loop tests — study PMU data quality

Phase 2 (Oct 2015 — Sept 2017)

» System install at Celilo in The Dalles, OR

* Closed-loop demonstration on Western
Interconnection using modulation of PDCI

* Documentation and publishing of results;
engagement of power systems community

Phase 3 (Oct 2017 — Present)

» Conduct longer-term tests

» Study transient stability potential

» Assess impacts with DC side

» Explore other sources of actuation

o PDCI Terminals
<wum) North-South ¥

@) Montana-NW o North PMU measurements

<@l East-West e South PMU measurements
— T A~

' Western Interconnection
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Damping Controller Strategy

Disturbances
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_VNorth PMUNorth eNorth
5 p Western
Pucheduied g PDCl — | Inter- 2
connection v 0
Pcommand ‘SO_Uth’ PMUSouth South
Real-timePMU | | ., s ]
ea = Ime | Pmax fSouth H(z) :
feedback 4! Controller
. I Gain 4f | 3
is the key to :_/ an :
stable control | P Mot H(z) [
. |
Tustin’s 2nd order Damping Controller
approximation H( Bessel @ 3Hz 1 PMUs take measurements
yA
N N 2 PMUs send data packets over network
: d i
0 — 1 a Low Pass|——> f 3 Packets arrive at damping controller

Pcommand(t) = K(fNorth(t - tdl) - fSouth(t - tdZ))
K is a constant gain with units of MW/mHz

4 Controller sends power command to PDCI

5 PDCI injects power command into grid
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Controller Employs Diversity 1.
and Redundancy in Feedback

PMU North 1 » Controller
_ APcmd1 }

| PMU South 1 » instance

‘ . APcmd2 ‘
' PMU South 2 Emp» instance APcmd >
To PDCI

| PMU North 4 Controller
APcmdi6
| PMU South 4 instance |
Diversity = Geographical Robustness

Redundancy = Site Measurement Robustness

Controller evaluates 16 feedback pairs every update cycle
to provide options in case of network issues

If needed, controller uses bumpless transfer to switch
between feedback pairs to avoid injecting step functions
into the system
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Design was driven by the need to detect and respond to certain
system conditions in real-time as well as asynchronous
monitoring functions at slower than real time

Asvnchronous Control Loop

PAMU Controller
Identification Events

Automated
Probing

\| Data Queue }‘

Log Files

PDCT Status

|

Kaw Data In

Supervisory System

Real-Tune Control Loop

Data

/:f Tolerance |

GPS

Correction

4 Delay /

Detection

v

47_ _w PMUFlags

i |Data Verification

A

State Machine

Bumpless
Transfer

Watchdog Crrewt

Controller in
Opeation Mode

Asynchronous

DAQ

— Watchdog Timer

Real-Time DAQ

Emergency Stop
Button i

Watchdog

Hardware

Bumpless Transfer| -
Hardware




Latest Tests Confirm 2016-2017 Test Results () &&=,
(Tests conducted at Celilo on May 23, 2018)

Frequency leference W|th CJB Gain = 9 MW/mHz
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COIl Power Flows Show Similar

Damping Improvement
(Tests conducted at Celilo on May 23, 2018)

COIl Power Flow COIl Power Flow
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-140
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-160

2800 -180

; m
< 2600 < 200 -
=
2400 -220
2200 -240
= (C3, Closed loop, K=15 = (3, Closed loop, K=15
== 5, Open loop = C5, Open loop
2000 | 1 | | 1 | 1 _260 | 1 1 1 1
30 32 34 36 38 40 42 44 32 34 36 38 40 42 44
Time (sec.) Time (sec.)

Generator drop in south
unrelated to testing

Real and reactive power flows through the COI
right after a Chief Joseph Brake insertion.
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Gain Tuning was Informed by Square Wave Pulses
(Tests conducted at Celilo on May 23, 2018)

delta PDCI_PWR_FLOW

200 T T . T
=BG, Openloop
=B2, Closedloop, K=8
150 — G2, Closed loop, K=15 | 7
—E2, Closed loop, K=21
100 -
50
g -J
= 0

50

-100

150

_2[][] 1 | L | 1 L 1 1 L L
29 30 31 32 33 M4 32 36 37 38 39 40

Time (sec.)
Lower gains =» less damping improvement
Higher gains = more “ringing” on the DC side
Sweet spot 2 K=12 to 15 MW/mHz =» Gain Margin = 6dB
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Events on the DC Side Provide a Good Basis

of Comparison for Controller Performance

Two very similar

events are captured.

May 6 — controller
was not connected.
June 11 — controller
was in closed-loop

operation.

This plot zooms in
on the y-axis to
show controller

modulation (June 11
curve).
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Damping controller performs as expected in
response to a trip on the DC side
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Communication and Delays

PMUs take PMUs send Packets Controller
measurements data packets dirive I?t dispatches
controller command PDCI acts
1 2 3 4 5
| | | | |
| | | | ] time
PMU Delay Communication Control  Command
Delay Processing  Delay
Delay

_____Name | Mean | Range [ _Note
Dependent on PMU settings.
Normal distribution.

16 15-40 Heavy tall

Normal around 9 ms, but a peak
at 16 ms due to control windows
when no data arrives (inconsistent
data arrival)

Control
Processing 11 2-17
Delay

g:lr:mand 11 11 Tests were consistent, fixed 11 ms

82 69-113  Total delay

Total time delays are well within tolerances (< 150 ms)
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« PMUs have inconsistent interpacket delays

/

Interpacket Delay (ms)
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 Time alignment
- The North and South

measurements need to have

the same PMU timestamp

- Supervisory system time
aligns the data

- If data is too far apart, the
control instance is disabled

e Other PMU data issues
- Data dropout:

Supervisory system catches
data dropouts and disables

that controller instance
- Corrupted data:
Supervisory system flags

irregular data (e.g. repeated
values, missing time stamps)
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Damping Control Using Distributed
Energy Resources

Advantages: ® A"V\

. Vg 03 Control cepter
 Robust to single points of failure % Bitish Columbia R 8 el
- Controllability of multiple modes M K
- Size/location of a single site not 2.6

critical as more distributed energy AG)

resources are deployed on grid s 3
« With 10s of sites engaged, single c 08

site power capability = 1 MW can  “V ® @

Nevada

provide improved damping

» Control signal is energy neutral RN
and short in time duration =» sites SN
can perform other applications

301:%0W
120w
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Damplng Control Usmg Wind Turbines

Real Power
Flow

1

1

w msBESS) |
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commanded '
? torque :
1

1

X-Net

« PDCI damping controller was modified to modulate the torq
command of a wind turbine at Sandia wind facility (SWiFT)
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Internet

~ Command Level

Controller at SNL
ue

» Actuator (wind turbine) is remote — not co-located with the controller

« Communication channel used the public internet

19
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Conclusions & Recommendations

* First successful demonstration of real-time PMU feedback in N.
America = much knowledge gained in networked control systems

« Control design is actuator agnostic = easily adaptable to other
sources of power injection (e.g., wind turbines, energy storage)

» Supervisory system design = easily extensible to future real-time
grid control systems to ensure “Do No Harm”

« Control designs to improve transient stability and voltage stability
on transmission grids

» Mitigation of forced oscillations — AC & HVDC

* Design of control architectures that are more robust to single
points of failure (e.g. decentralized control)

« Control designs that leverage large #’s of distributed assets (e.g.
power sources, measurement systems) to improve grid resilience

* Real-time PMU data represents an enormous amount of data:
o How does one manage this amount of data?
o How can one leverage the data for key information?

o Potential techniques include machine learning
20



