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Outline
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National
Laboratories

• DCON Tests at Celilo

• Tuning of DCON Gain (May 23, 2018)

• Implement +/- 0.2 mHz dead-zone (May 23, 2018)

• Events during "Walkaway" Test (May 24, 2018 — June 21, 2018)

• PMU Latencies

• Characterization of latencies

• Impact on controller

• PMU Data Considerations

• Time alignment

• Corrupted data

• Other Control Architectures

• Distributed control

• Other sources of power injection
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Problem:

• Poorly damped inter-
area oscillations in
congested
transmission
corridors can lead to
system breakups and
widespread outages

• To prevent this,
power flows are
constrained well
below rated
transmission limits
+ inefficient use of
expensive capital
investments

Summary

Solution:
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Ber efits:

• Feedback control • Improved grid
using real-time PMU reliability
data: First
demonstration of
this in North America

• Real power injection
by modulating PDCI
power

• Supervisory system
integrated with
controller for
ensuring "Do No
Harm" to grid

• Additional contingency
for stressed grid
conditions

• Avoided costs from a
system-wide blackout

• Reduced or postponed
need for new
transmission capacity

• Enables higher power
flows on congested
transmission corridors
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Background
• Based on 1970s BPA experiments on PDCI

later shown to have destabilized BC-US mode

• Revived in 2007 — 2012 by BPA with Montana
Tech leveraging PMU deployments in WECC

• Current project launched in June 2013 as a
collaboration of SNL, MT, BPA, and DOE to
develop and demonstrate damping control

• Phase 1 (June 2013 — Sept 2015)
• Controller design based on extensive
simulation studies & eigensystem analysis

• Open-loop tests — study PMU data quality

• Phase 2 (Oct 2015 — Sept 2017)
• System install at Celilo in The Dalles, OR
• Closed-loop demonstration on Western

Interconnection using modulation of PDCI
• Documentation and publishing of results;
engagement of power systems community

• Phase 3 (Oct 2017 — Present)
• Conduct longer-term tests
• Study transient stability potential
• Assess impacts with DC side
• Explore other sources of actuation

PDCI
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Montana-NW North PMU measurements
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Western Interconnection
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Damping Controller Overview
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Damping Controller Strategy
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Damping Controller

PMUs take measurements

PMUs send data packets over network

3 Packets arrive at damping controller

4 Controller sends power command to PDCI

s PDCI injects power command into grid
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Controller Employs Diversity
and Redundancy in Feedback
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• Diversity = Geographical Robustness

• Redundancy = Site Measurement Robustness

• Controller evaluates 16 feedback pairs every update cycle
to provide options in case of network issues

• If needed, controller uses bumpless transfer to switch
between feedback pairs to avoid injecting step functions
into the system
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Supervisor Design Philosophy
Sandia
National
Laboratories

Design was driven by the need to detect and respond to certain
system conditions in real-time as well as asynchronous

monitoring functions at slower than real time
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Latest Tests Confirm 2016-2017 Test Results
(Tests conducted at Celilo on May 23, 2018)

Chief Joseph brake test 12

8

Gain = 9 MW/mHz
Damping improved by
4.5 percentage points
(10.0% to 14.5%)
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Gain = 15 MW/mHz
Damping improved by 6
percentage points
(10.0% to 16.0%)
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COI Power Flows Show Similar
Damping Improvement

(Tests conducted at Celilo on May 23, 2018)
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- C3, Closed loop, K=15

C5, Open loop
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Generator drop in south
unrelated to testing

Real and reactive power flows through the COl
right after a Chief Joseph Brake insertion.
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Gain Tuning was Informed by Square Wave Pulses
(Tests conducted at Celilo on May 23, 2018)
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Events on the DC Side Provide a Good Basis
of Comparison for Controller Performance

PDCI power flow - DC (MW)

Two very similar
events are captured.
May 6 — controller
was not connected.
June 11 — controller
was in closed-loop

operation.

This plot zooms in
on the y-axis to
show controller

modulation (June 11
curve).
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Damping controller performs as expected in
response to a trip on the DC side
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Communication and Delays

PMUs take
measurements

PMU Delay

Name

PMU
Dela
Communication
Dela

Control
Processing
Delay

Command
Dela

Effective Delay

PMUs send
data packets

Packets
arrive at
controller

Controller
dispatches
command PDCI acts

l time

Communication Control Command
Processing Delay

Delay

Delay

Mean Note

44 40 — 48
Dependent on PMU settings.
Normal distribution.

16 15 — 40 Heavy tail

11 2 — 17

Normal around 9 ms, but a peak
at 16 ms due to control windows
when no data arrives (inconsistent
data arrival)

11 11 Tests were consistent, fixed 11 ms

82 69 — 113 Total delay

Total time delays are well within tolerances (< 150 ms)
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PMU Data Considerations

• PMUs have inconsistent interpacket delays
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—Consistent data arrival
—Inconsistent data arrival
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• Delay inconsistency also affects the power command

ideal case
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PMU Data Considerations

• Time alignment
- The North and South
measurements need to have
the same PMU timestamp

- Supervisory system time
aligns the data

- If data is too far apart, the
control instance is disabled

• Other PMU data issues
- Data dropout:

Supervisory system catches
data dropouts and disables
that controller instance

- Corrupted data:
Supervisory system flags
irregular data (e.g. repeated
values, missing time stamps)

Frequencies (Hz)
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Damping Control Using Distributed
Energy Resources

Advantages: 

• Robust to single points of failure

• Controllability of multiple modes

• Size/location of a single site not
critical as more distributed energy
resources are deployed on grid

• With lOs of sites engaged, single
site power capability r=-1 1 MW can
provide improved damping

• Control signal is energy neutral
and short in time duration 4 sites
can perform other applications

British Columbia

120 W
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A Control center
PMU location
Injection site

110 W
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Command Level
Controller at SNL

• PDCI damping controller was modified to modulate the torque
command of a wind turbine at Sandia wind facility (SWiFT)

• Actuator (wind turbine) is remote — not co-located with the controller
• Communication channel used the public internet 1 9



Conclusions & Recommendations
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• First successful demonstration of real-time PMU feedback in N.
America + much knowledge gained in networked control systems

• Control design is actuator agnostic + easily adaptable to other
sources of power injection (e.g., wind turbines, energy storage)

• Supervisory system design + easily extensible to future real-time
grid control systems to ensure "Do No Harm"

• Control designs to improve transient stability and voltage stability
on transmission grids

• Mitigation of forced oscillations — AC & HVDC

• Design of control architectures that are more robust to single
points of failure (e.g. decentralized control)

• Control designs that leverage large tt's of distributed assets (e.g.
power sources, measurement systems) to improve grid resilience

• Real-time PMU data represents an enormous amount of data:
o How does one manage this amount of data?
o How can one leverage the data for key information?
o Potential techniques include machine learning
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