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GOAL: Assess effectiveness of the Kokkos programming
model for Monte Carlo particle transport on the GPU

• Kokkos is a programming model for performance
portability across manycore devices including GPUs

• CUDA is a programming model explicitly designed for
NVIDIA GPUs

• CUDA has direct access to features such as constant
memory and warp shuffle that can improve performance

History-Based Transport Algorithm

• Traditional approach used by most production codes

• GPU implementation fully defined within one Big Kernel
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Event-Based Transport Algorithm

• Novel approach that reduces divergence on GPUs

• GPU implementation requires multiple kernels
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Event-Based Photon Attenuation

• Photon attenuation can be implemented with only three
kernels as no events need to be processed

Source Kernel

Transport Kern

Tally Kernel

• Creates all photons from a common
source definition

• Identifies which photons are
absorbed and which ones escape

• Counts the total number of photons
that escaped

• 1D photon attenuation problem with 32-bit integer
escape tally for 108 particle histories

• Compared history-based and event-based algorithms

• Repeated tests on Tesla K40, Tesla K80, and Tesla P100

• All timing data is an average of ten independent runs

-ner- Results
Average Speedup of CUDA over Kokkos (Total Runtime)

• Kokkos was more effective for event-based transport than
for history-based transport
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Average Speedup of CUDA over Kokkos (Key Kernels)

• Only the Transport Kernel had similar runtimes between
the Kokkos and CUDA versions

• CUDA was consistently faster for the Source Kernel due
to its effective use of constant memory
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Tally Replication

• Kokkos and CUDA had similar runtimes for the Tally

Kernel when tallies were replicated
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Atomics

Thread 3
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• Kokkos with atomics was faster if no photons escaped
because no atomic operations were needed

• CUDA's warp shuffle was 14x faster on the K40 when
half the photons escaped
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• Kokkos version of the Big Kernel was slower than the
CUDA version for all variations considered

• Direct access to CUDA features is more important for
history-based transport

Big Kernel with Tally Replication

• Kokkos is slower because the Big Kernel needs too
much data for Kokkos to use constant memory
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Big Kernel with Atomics

• Kokkos was 6 times slower on the K40 when half the
photons escape due to using atomics for tallying instead
of warp shuffle
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onclusions

• Total runtime using Kokkos was competitive with
CUDA in most cases — especially on the Tesla P100

• Direct access to CUDNs constant memory and warp
shuffle features noticeably improved performance for
the Big Kernel, Source Kernel, and Tally Kernel

• Kokkos performance could be improved by restructuring
the code to get indirect access to CUDA features hidden
under the abstraction

• Future work will compare Kokkos and CUDA on a more
complex Monte Carlo transport problem
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