
UNCLASSIFIED

to,

•4°K!rnels ••
• 

..:.. 4. as.

e • •
• 
 

•
9t 

• • 
• •

• •d • • .11. it.401. •

• . • •

•• , • .•

• • •
• se.

• 

•

• 

9

.

0

.• 

•
e

• l!"• 
• • 

ri

Ker 
• 

ry: lz.:..1.3(5š'$' Ter, ,Php; :Greeg p . Valdez,• PhD
•

• •

National 'Laboratories

GOAL: Assess effectiveness of the Kokkos programming
model for Monte Carlo particle transport on the GPU

• Kokkos is a programming model for performance
portability across manycore devices including GPUs

• CUDA is a programming model explicitly designed for
NVIDIA GPUs

• CUDA has direct access to features such as constant
memory and warp shuffle that can improve performance

History-Based Transport Algorithm

• Traditional approach used by most production codes

• GPU implementation fully defined within one Big Kernel

Create particle from source

Yes

No

All
particles

done?

Find distance to next collision and boundary

Process a su face crossing

Particle

still
active?

Yes

Process the collision

Event-Based Transport Algorithm

• Novel approach that reduces divergence on GPUs

• GPU implementation requires multiple kernels

Source:
Create particles

Transport:
Determine
next event

Process next

events

Ye s

Event-Based Photon Attenuation

• Photon attenuation can be implemented with only three
kernels as no events need to be processed

Source Kernel

Transport Kern

Tally Kernel

• Creates all photons from a common
source definition

• Identifies which photons are
absorbed and which ones escape

• Counts the total number of photons
that escaped

• 1D photon attenuation problem with 32-bit integer
escape tally for 108 particle histories

• Compared history-based and event-based algorithms

• Repeated tests on Tesla K40, Tesla K80, and Tesla P100

• All timing data is an average of ten independent runs

-ner- Results
Average Speedup of CUDA over Kokkos (Total Runtime)

• Kokkos was more effective for event-based transport than
for history-based transport

2.0

1.5

1.0

0.5

0.0

K40 K80 P100

• Event-based History-based

Average Speedup of CUDA over Kokkos (Key Kernels)

• Only the Transport Kernel had similar runtimes between
the Kokkos and CUDA versions

• CUDA was consistently faster for the Source Kernel due
to its effective use of constant memory

4.0 -

3.0 -

2.0 -

1.0 -

0.0 -

Xmliftimilftimmommummimi.

K40

• •
6% all.

g

K80 P100

4(mHistory-based (Big Kernel) • Event-based (Source Kernel)

Event-based (Transport Kernel) Event-based (Tally Kernel)

Tally Kerne

Tally Replication

• Kokkos and CUDA had similar runtimes for the Tally

Kernel when tallies were replicated

Thread 1

Escape
Tally

Thread 2

Escape
Tally

Atomics

Thread 3

Escape
Tally

• Kokkos with atomics was faster if no photons escaped
because no atomic operations were needed

• CUDA's warp shuffle was 14x faster on the K40 when
half the photons escaped

Thread 1 Thread 3
\/

Escape
Tally

None Escape

Half Escape

All Escape

K40

■ Kokkos
■ CUDA

1E-01 1E+00 1E+01 1E+02

Time (ms)

L 1:7 Cr:3/G .7 
0

C7-1 

CIr-V9 C:) cz, C:7 'S
cp

•c:"

I/

111
00 0
011

•

' •
Philto by G.

10
1 101 0 1

10011100
11 11 1i
00 10011

10 11111
1 0 1 011
0 011 0 0 10
1 1000

• Kokkos version of the Big Kernel was slower than the
CUDA version for all variations considered

• Direct access to CUDA features is more important for
history-based transport

Big Kernel with Tally Replication

• Kokkos is slower because the Big Kernel needs too
much data for Kokkos to use constant memory

None Escape

Half Escape

All Escape

K40 P100

• K kk s

■ CUDA

1E-01 1E+00 1E+01 1E+02

Time (ms)

None Escape

Half Escape

All Escape

1E-01 1E+00 1E+01 1E+02

Time (ms)

Big Kernel with Atomics

• Kokkos was 6 times slower on the K40 when half the
photons escape due to using atomics for tallying instead
of warp shuffle

K40

None Escape

Half Escape

All Escape

MK k s

■ CUDA

1E-01 1E+00 1E+01 1E+02

Time (ms)

None Escape

Half Escape

All Escape

P100

1E-01 1E+00 1E+01 1E+02

Time (ms)

onclusions

• Total runtime using Kokkos was competitive with
CUDA in most cases — especially on the Tesla P100

• Direct access to CUDNs constant memory and warp
shuffle features noticeably improved performance for
the Big Kernel, Source Kernel, and Tally Kernel

• Kokkos performance could be improved by restructuring
the code to get indirect access to CUDA features hidden
under the abstraction

• Future work will compare Kokkos and CUDA on a more
complex Monte Carlo transport problem

Ack owled • ements

The authors would like to thank Frank Angers from the
University of Michigan for obtaining all the performance
results on the K40, K80, and P100.

This work was supported by the Advanced Technology
Development and Mitigation (ATDM) and Laboratory
Directed Research and Development programs at Sandia
National Laboratories. Sandia National Laboratories is a
multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract
DE-NA0003525.

s LosAlamos AiA
NATIONAL LABORATORY
  EST.1943  

Lid 

Lawrence
Livermore

i  National
Laboratory

UNCLASSIFIED

Sanda
National
Laboratories National Nuclear Security Administration

SAND2018-11004C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


