

Flexo: Development Activities for Z-Next Simulation

PRESENTED BY

K. Beckwith, S. Bond, B. Granzow, N. Hamlin, D. Ibanez, C. Jennings, M. Martin, A. Stagg and T. Voth

SAND2018-11001PE

Motivations

- Develop a NGP performant eXtendend MagnetoHydroDynamic (XMHD) tool to support Z-Next design activities.
 - Starting from proven DG XMHD physics code (Perseus3D; Seyler and Martin, 2011).
 - Adding radiation transport to capture requisite target physics.
 - Incorporating AMR to maintain solution accuracy while remaining computationally feasible over wide range of length scales.
 - One of a suite of codes supporting different problem regimes.
- Designed from birth to support Next Generation Platforms using Kokkos:
 - Portably performant: runs efficiently on most modern hardware, especially NVIDIA GPUs.
 - Incorporates MPI to manage memory demands of large problems.
- And that is capable of impacting multiple Z-Next target needs:
 - NGS mesh generation
 - Extended Ohm's law magnetohydrodynamics (XMHD)
- The current path:
 - Extend an existing unstructured simplex adapt code to include cell-based AMR
 - Write a new XMHD application on top of the new AMR data structures
 - Add multi-material capability.
 - Add requisite radiation transport features.
 - Demo, profile, verify and deploy the resulting AMR XMHD code to impact Z-Next design.

Acknowledgements

Team:

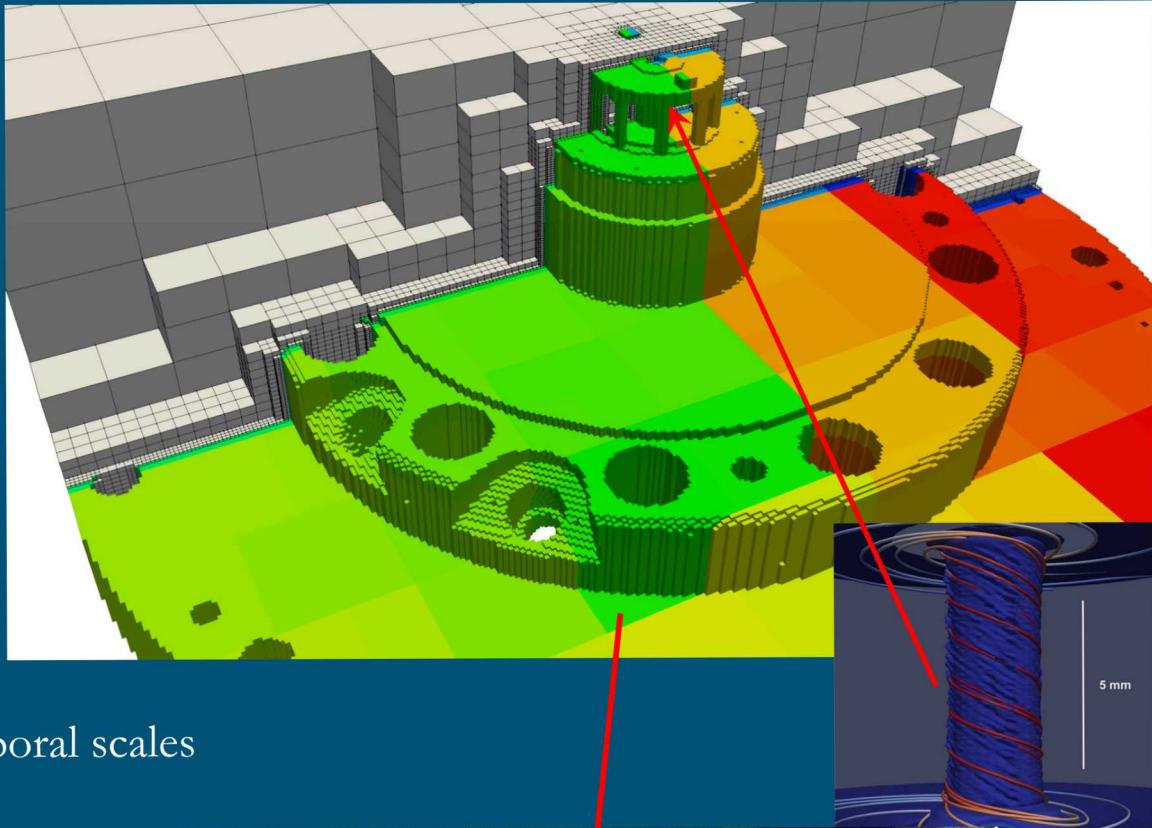
- Kris Beckwith
- Stephan Bond
- Brian Granzow
- Nat Hamlin
- Chris Jenning
- Matt Martin
- Andy Porwitzk
- Alan Stagg

Original Perseus Fortran90:

- Matt Martin
- Charles Seyler
- Yang Yang
- Xuan Zhao

Challenges

- Low density electrode plasmas
- Must include Hall term
- Multiple materials / EOS
- Complex geometries
- Wide range of spatial and temporal scales
- Incorporate radiation physics
- Advanced computational architectures



PERSEUS GOL equations

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

Density

$$\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + \mathbf{I} P) = \mathbf{J} \times \mathbf{B}$$

Momentum

$$\partial_t \mathcal{E}_n + \nabla \cdot (\mathbf{u} (\mathcal{E}_n + P)) = \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \eta \|\mathbf{J}\|^2$$

Total Energy

$$\partial_t \mathbf{B} + \nabla \times \mathbf{E} = 0$$

Magnetic Field

$$\partial_t \mathbf{E} - c^2 \nabla \times \mathbf{B} = -\frac{1}{\epsilon_0} \mathbf{J}$$

Electric Field

$$\partial_t \mathbf{J} + \nabla \cdot (\mathbf{u} \mathbf{J} + \mathbf{J} \mathbf{u} - \frac{1}{n_e e} \mathbf{J} \mathbf{J} - \frac{e}{m_e} \mathbf{I} P_e)$$

$$= \frac{n_e e^2}{m_e} (\mathbf{E} + \mathbf{u} \times \mathbf{B} - \eta \mathbf{J} - \frac{1}{n_e e} \mathbf{J} \times \mathbf{B})$$

Current Density

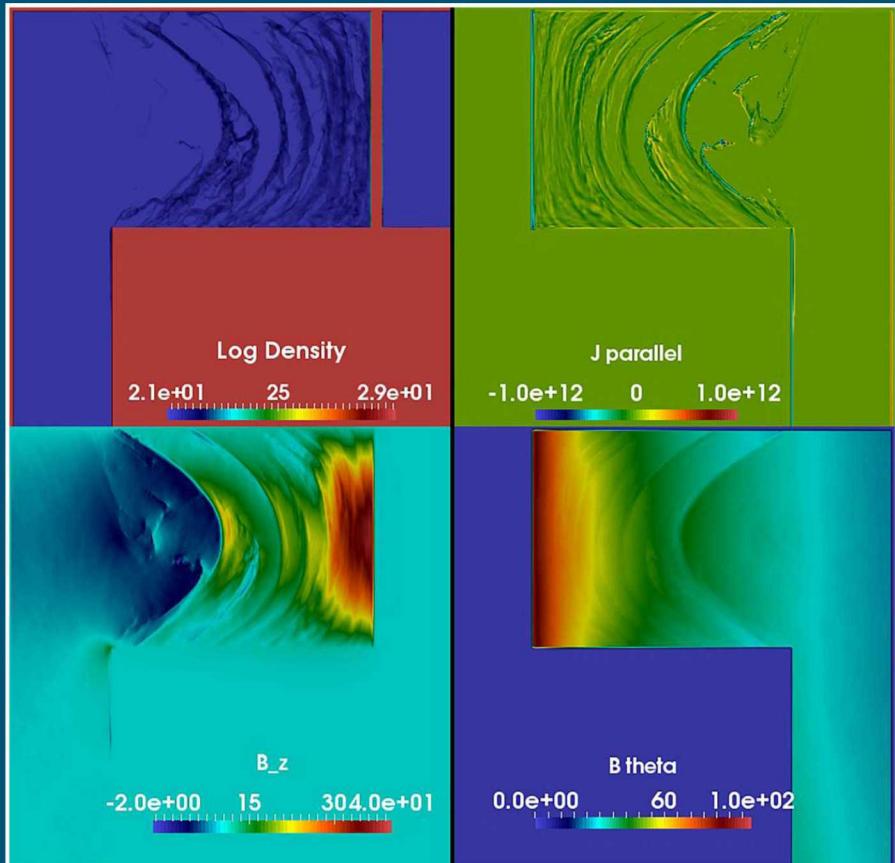
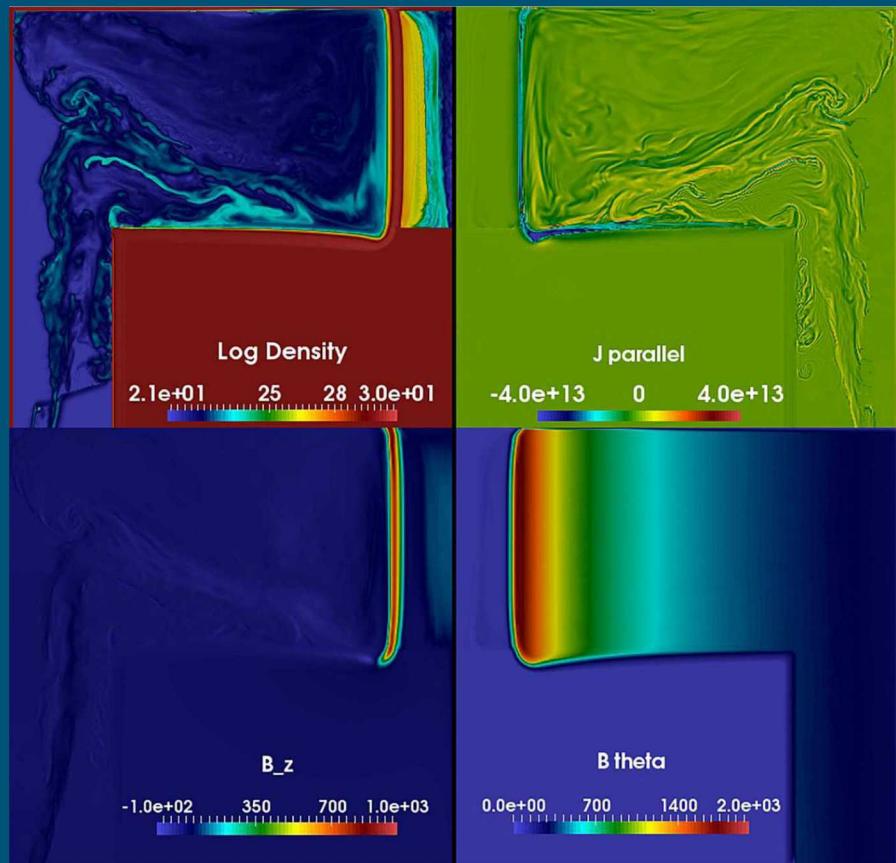
$$\partial_t S_e + \nabla \cdot (\mathbf{u}_e S_e) = (\gamma - 1) n_e^{1-\gamma} \eta \|\mathbf{J}\|^2$$

Electron Entropy

Code History

- Finite Volume Fortran90 code: M. Martin and C. Seyler 2011
 - Plasma as an Extended-MHD Relaxation System using and Efficient Upwind Scheme
 - Generalized Ohm's Law 2-Fluid model (14 moment)
 - Relaxation system of equations
 - Finite Volume / Uniform Grid
 - Implicit-Explicit Monotone Upwind Scheme for Conservation Laws
 - Modified Local Lax-Friedrichs
 - Locally linearly implicit (local 3 x 3 linear solves)
 - Able to recover resistive-MHD limit
- DG Perseus Fortran90 code: X. Zhao, Y. Yang and C. Seyler 2014
 - Generalized Ohm's Law 2-Fluid model (15 moment)
 - Discontinuous Galerkin extension of FV Perseus
 - Modified HLLC flux
 - Locally linearly implicit (local 3 x 3 solves)
 - Positivity preserving

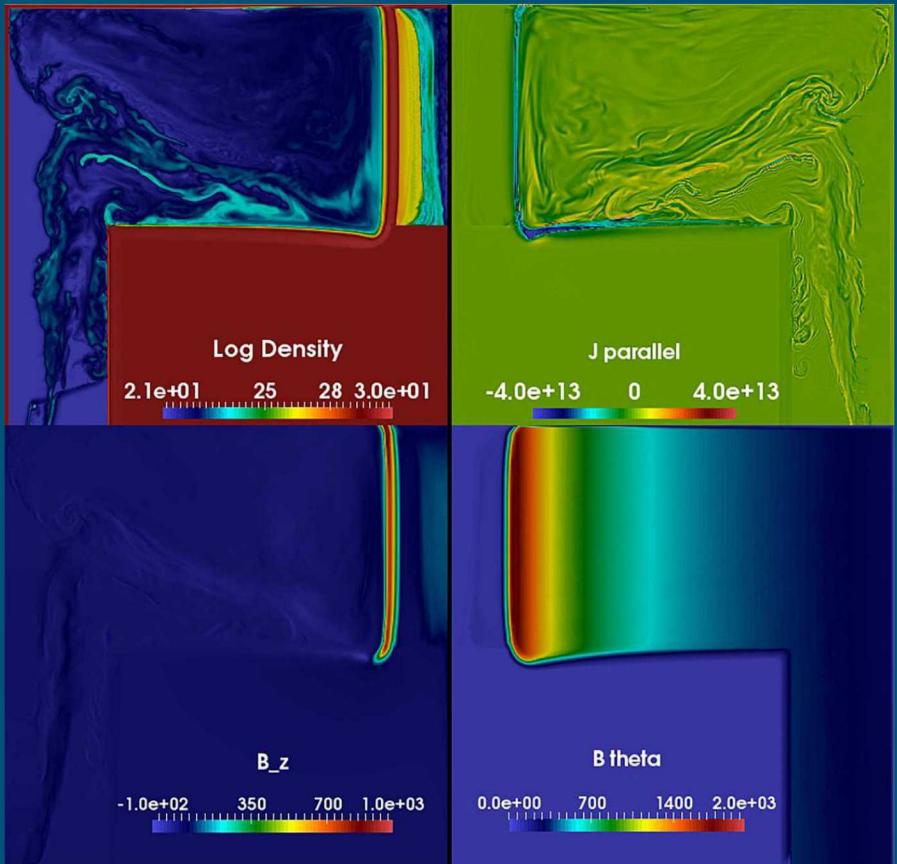
PERSEUS Results

 $t = 20\text{ns}$  $t = 90\text{ns}$ 

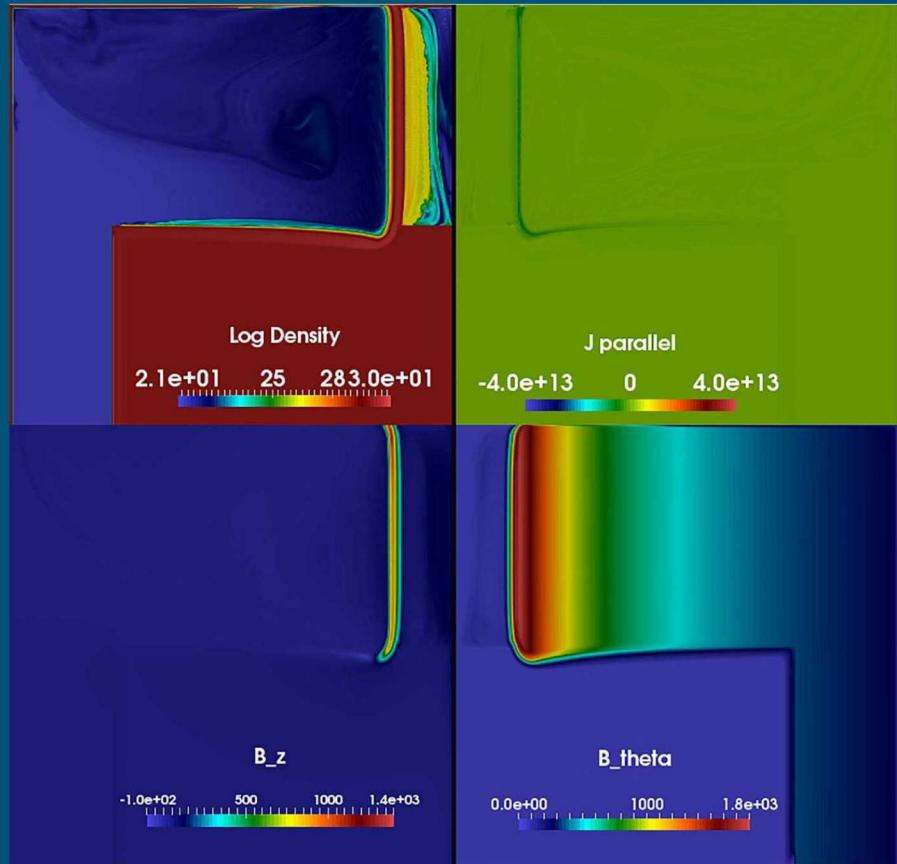
XMHD: No plasma layer initialized on feed walls

* C.E. Seyler, M.R. Martin, N.D. Hamlin, Phys. Plasmas, 25 (2018)

XMHD



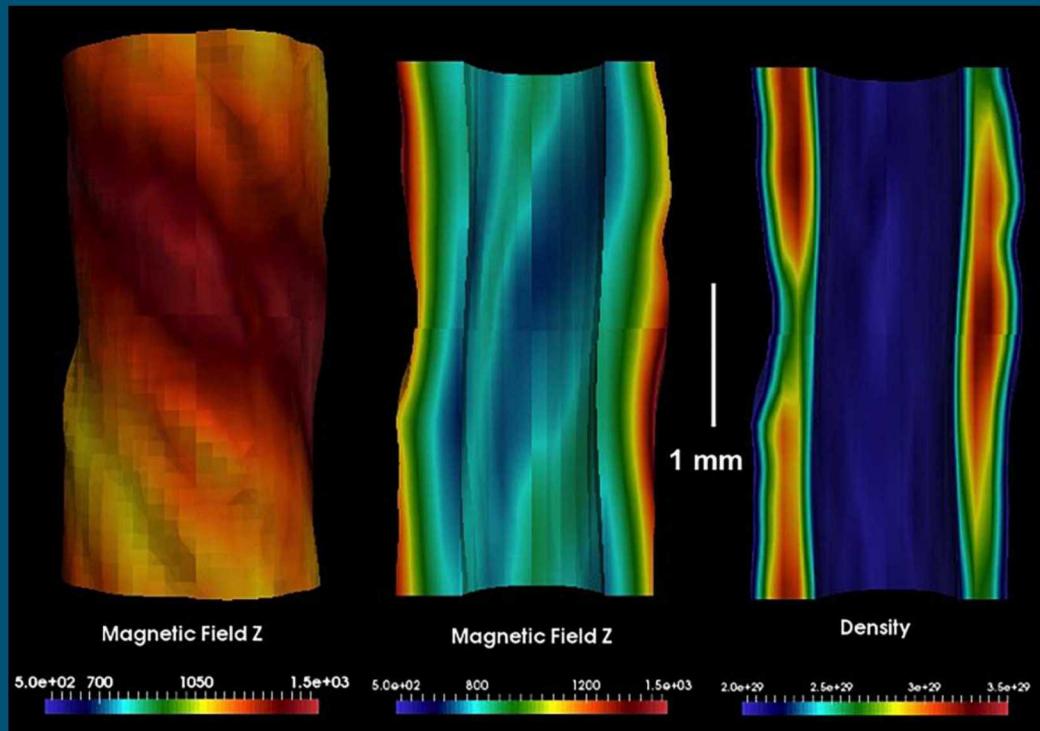
MHD



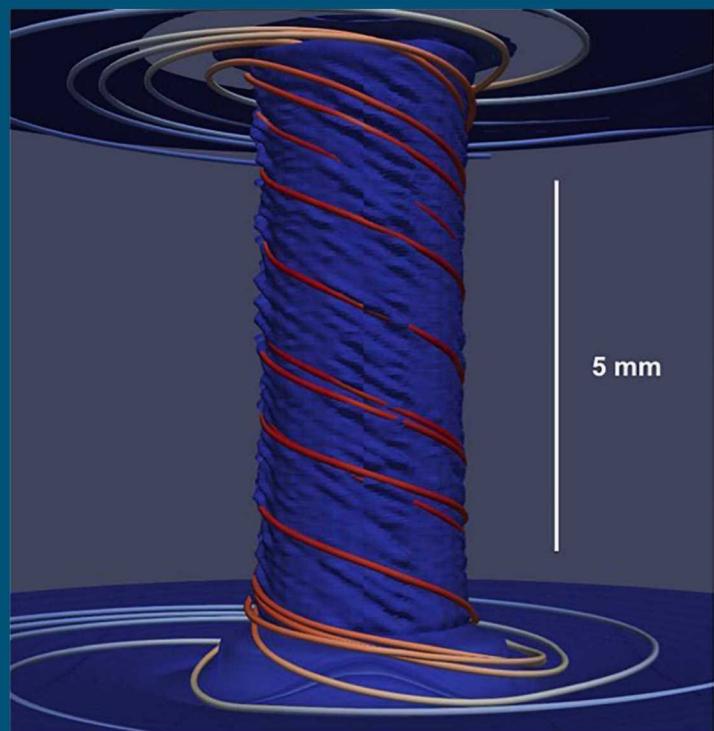
XMHD: No plasma layer initialized on feed walls, $t = 90\text{ns}$

* C.E. Seyler, M.R. Martin, N.D. Hamlin, Phys. Plasmas, 25 (2018)

iso contours

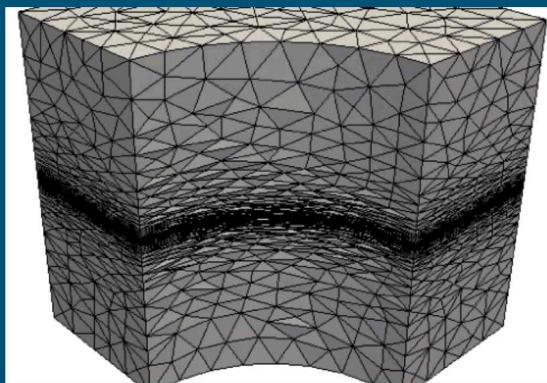


density

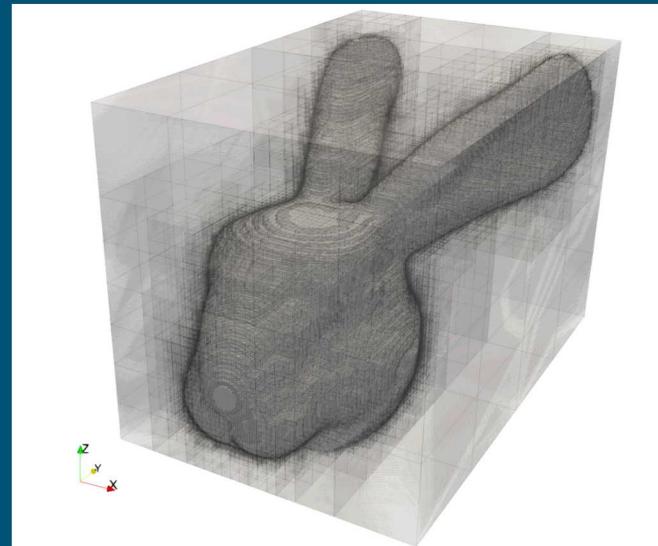


A Cell-Based AMR library for NGP

- Omega_h was:
 - Array-based C++ simplex adapt code
 - Conforming unstructured adaptation
 - Isotropic
 - Anisotropic
 - Local mesh modification on cavities
- Built with MPI + X parallelism
 - CUDA
 - OpenMP
- Enabled via Kokkos

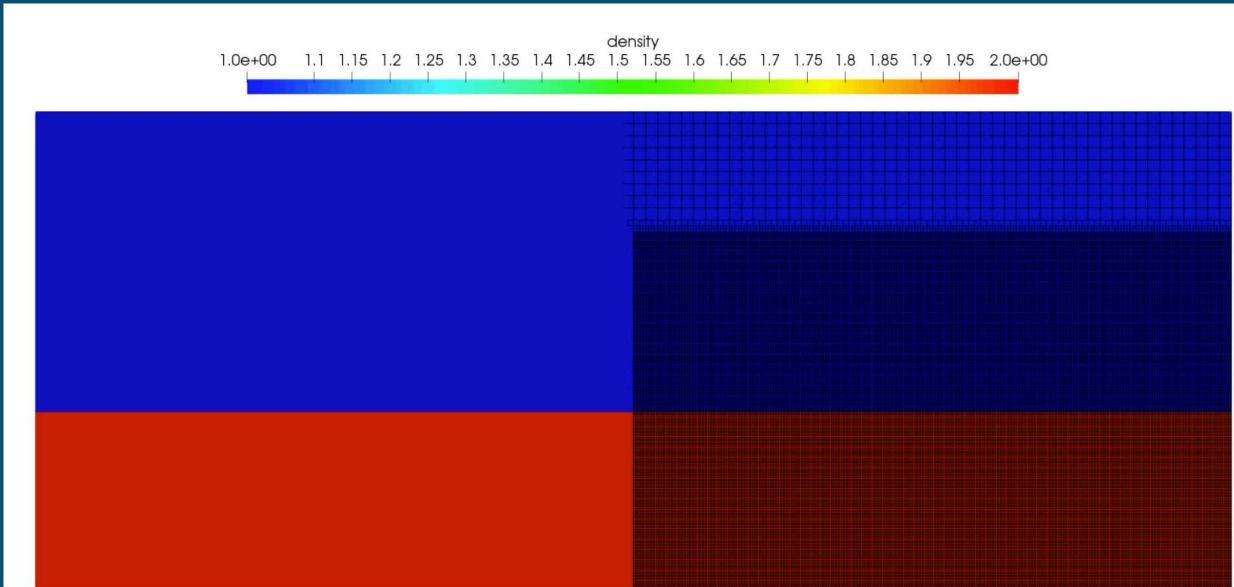
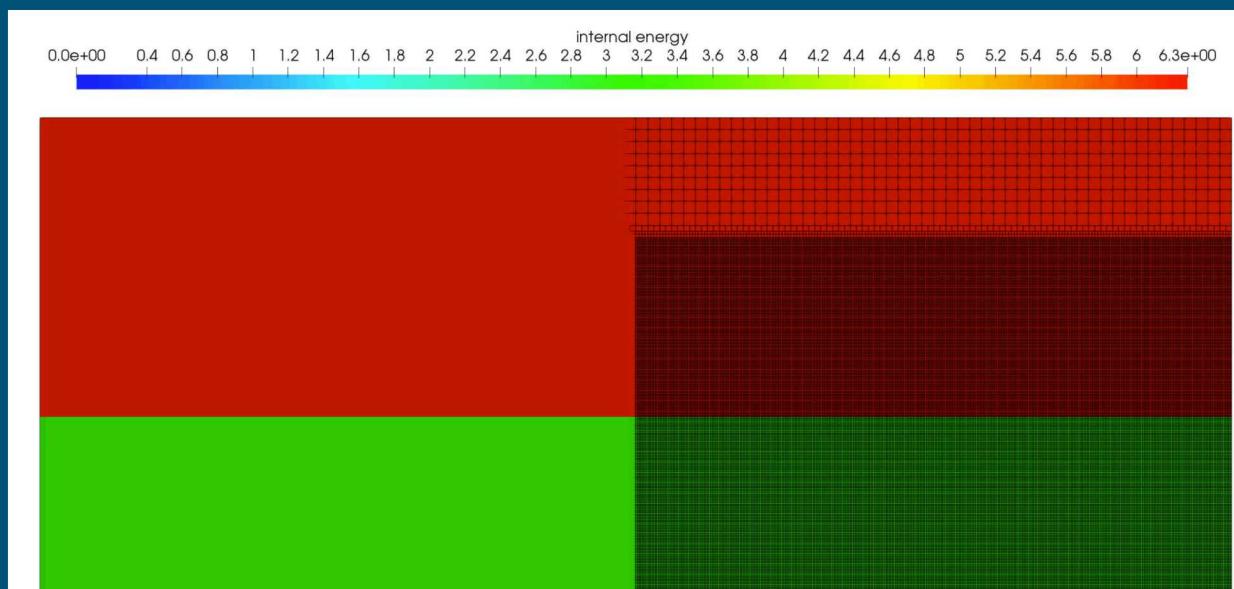


- Omega_h is now:
 - Everything it was before plus:
 - Unstructured cell-based AMR:
 - Hanging node refinement
 - Currently a single refinement template
 - Quads split into 4 quads
 - Hexes split into 8 hexes



Ibanez, Daniel Alejandro. *Conformal Mesh Adaptation on Heterogeneous Supercomputers*. Diss. Ph. D. thesis, Rensselaer Polytechnic Institute, 2016.

FLEXO Time Static AMR Mesh Example: KH Instability



Radiation Transport

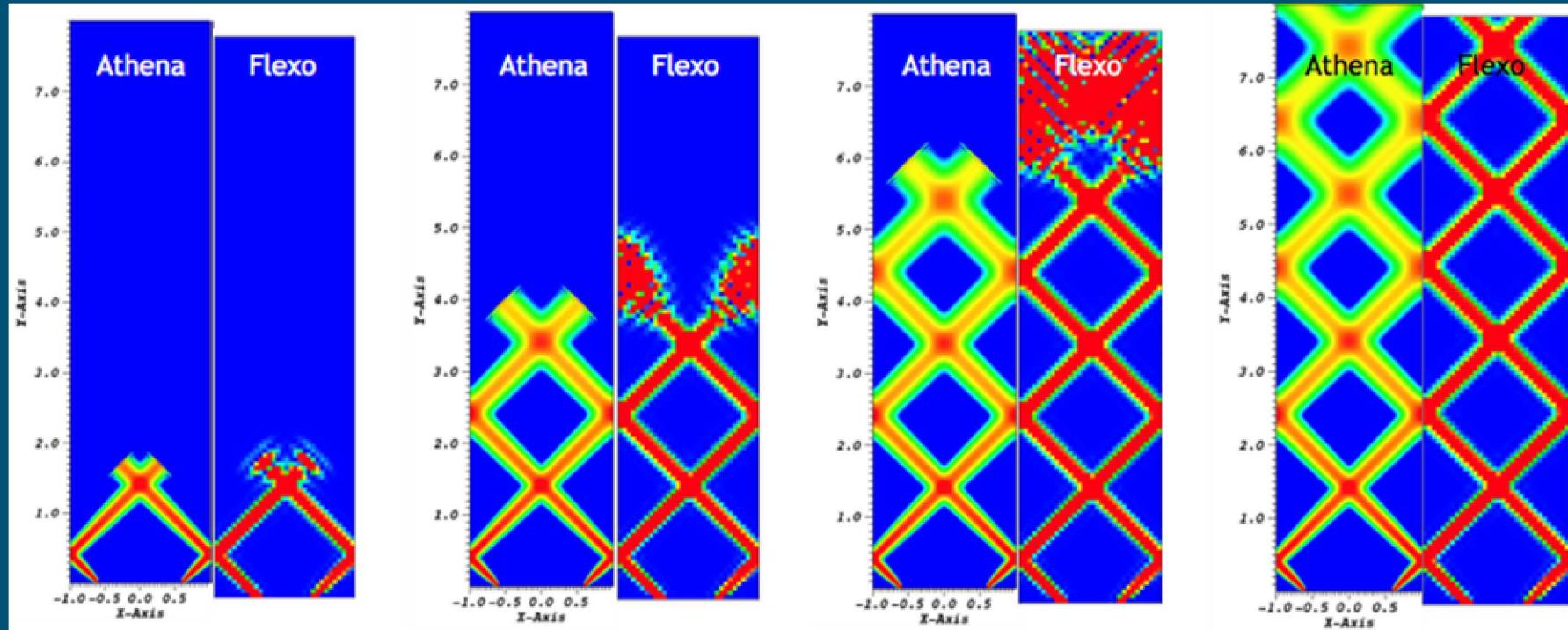
Imposes significant computational cost (performance and/or memory) attacked using moment formalisms:

- However requires closure relation
- Flux limited diffusion is robust and easy to implement but has deficiencies in optically thin regions
- M1 closure rectifies these defects but is unable to treat multiple radiation sources.
- VET (Variable Eddington Tensor) methods are not subject to these limitations but are based on the assumption that the time-scale for radiative transport is short compared to flow dynamical time-scales.

Must accurately couple the radiation field to the magneto-hydrodynamic equations:

- Follow approach of Sekora and Stone (2010) extended to multi-dimensions by Jiang et al. (2012) using the VET closure of Davis et al. (2012).
- Methods used here is described by Jiang et al. (2014) and are publically available as part of the Athena MHD code.
- Use extensive test suite of Jiang et al. (2014) to verify algorithms.

Radiation Transport: Crossing Beams Problem



- Athena resolutions: 512x1024 zones; Flexo resolution: 32x128 zones

Multi-Material Treatment

- Single temperature and velocity
- Multiple mass and internal energy densities
- Conservative form: Partial densities

$$\rho := \rho_1 + \rho_2 + \cdots \rho_n$$

$$\partial_t \rho_i + \nabla \cdot (\rho_i \mathbf{u}) = 0$$

- Non-conservative form: Density fractions

$$\rho_i = Y_i \rho, \quad Y_1 + Y_2 + \cdots Y_n = 1$$

$$\partial_t Y_i + \mathbf{u} \cdot \nabla Y_i = 0$$

- Non-conservative form: Inverse density fractions

$$\rho_i = V_i^{-1} \rho, \quad V_1^{-1} + V_2^{-1} + \cdots V_n^{-1} = 1$$

$$\partial_t V_i + \mathbf{u} \cdot \nabla V_i = 0$$

Conclusions and Future Work

- Conclusions

- Extended existing unstructured simplex adapt code to include cell-based AMR
- AMR library written from the get-go with MPI + X parallelism in mind
- Demonstrated AMR abilities in FLEXO prototype code.

- Future Work

- Omega_h AMR
 - MPI implementation (already in progress)
 - Add different refinement templates (anisotropic AMR)?
 - Coarsening
- FLEXO
 - Radiation transport (already in progress)
 - XMHD implementation (already in progress)
 - MPI implementation using Omega_h
 - Time-dynamic AMR meshes
 - Local solution transfer operators during AMR

- Questions?