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2 Motivations

• Develop a NGP performant eXtendend MagnetoHydroDynamic (XMHD) tool to
support Z-Next design activities.
• Starting from proven DG XMHD physics code (Perseus3D; Seyler and Martin, 2011).
• Adding radiation transport to capture requisite target physics.
• Incorporating AMR to maintain solution accuracy while remaining computationally feasible over
wide range of length scales.

• One of a suite of codes supporting different problem regimes.

• Designed from birth to support Next Generation Platforms using Kokkos:
• Portably performant: runs efficiently on most modern hardware, especially NVIDIA GPUs.
• Incorporates MPI to manage memory demands of large problems.

• And that is capable of impacting multiple Z-Next target needs:
• NGS mesh generation
• Extended Ohm's law magnetohydrodynamics (XMHD)

• The current path:
• Extend an existing unstructured simplex adapt code to include cell-based AMR
• Write a new XMHD application on top of the new AMR data structures
• Add multi-material capability.
• Add requisite radiation transport features.
• Demo, profile, verify and deploy the resulting AMR XMHD code to impact Z-Next design.
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4 Challenges

o Low density electrode plasmas

o Must include Hall term

o Multiple materials / EOS

o Complex geometries
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Wide range of spatial and temporal scales

Incorporate radiation physics

Advanced computational architectures
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6 Code History

o Finite Volume Fortran90 code: M. Martin and C. Seyler 2011
o Plasma as an Extended-MHD Relaxation System using and Efficient Upwind Scheme
o Generalized Ohm's Law 2-Fluid model (14 moment)

o Relaxation system of equations

o Finite Volume / Uniform Grid

o Implicit-Explicit Monotone Upwind Scheme for Conservation Laws

o Modified Local Lax-Friedrichs

o Locally linearly implicit (local 3 x 3 linear solves)

o Able to recover resistive-MHD limit

o DG Perseus Fortran90 code: X. Zhao, Y. Yang and C. Seyler 2014
o Generalized Ohm's Law 2-Fluid model (15 moment)
o Discontinuous Galerkin extension of FV Perseus

o Modified HLLC flux

o Locally linearly implicit (local 3 x 3 solves)

o Positivity preserving
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8 PERSEUS Results
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9 PERSEUS Results
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10 A Cell-Based AMR library for NGP

• Omega_h was:

• Array-based C++ simplex adapt code

• Conforming unstructured adaptation

• Isotropic

• Anisotropic

• Local mesh modification on cavities

• Built with MPI + X parallelism

• CUDA

• OpenMP

• Enabled via Kokkos

• Omega_h is now:

• Everything it was before plus:

• Unstructured cell-based AMR:

• Hanging node refinement

• Currently a single refinement template

• Quads split into 4 quads

• Hexes split into 8 hexes

Ibanez, Daniel Alejandro. Conformal Mesh Adaptation on Heterogeneous Supercomputers. Diss. Ph. D. thesis,

Rensselaer Polytechnic Institute, 2016.
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11 FLEXO Time Static AMR Mesh Example: KH Instability
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12 Radiation Transport ■

Imposes significant computational cost (performance and/or memory)
attacked using moment formalisms:
• However requires closure relation
• Flux limited diffusion  is robust and easy to implement but has deficiencies

in optically thin regions
• M1 closure  rectifies these defects but is unable to treat multiple radiation

sources.
• VET (Variable Eddington Tensor) methods are not subject to these

limitations but are based on the assumption that the time-scale for
radiative transport is short compared to flow dynamical time-scales.

Must accurately couple the radiation field to the magneto-hydrodynamic
equations:
• Follow approach of Sekora and Stone (2010) extended to multi-dimensions

by Jiang et al. (2012) using the VET closure of Davis et al. (2012).
• Methods used here is described by Jiang et al. (2014) and are publically

available as part of the Athena MHD code.
• Use extensive test suite of Jiang et al. (2014) to verify algorithms.



13 Radiation Transport: Crossing Beams Problem •
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• Athena resolutions: 512x1024 zones; Flexo resolution: 32x128 zones



14 Multi-Material Treatment

• Single temperature and velocity
• Multiple mass and internal energy densities
• Conservative form: Partial densities

p := pl+ P2 + ' • • pn

atm +V • (piu) = 0

• Non-conservative form: Density fractions

pi = Yip, Y1+ Y2 + • • • Yn = 1

atYi +u.Vvi=0

• Non-conservative form: Inverse density fractions

pi = v_ip, vi_1 + v2_1 + ... vw1 =1

atv,+u-vvi =o

•

M.T.H. de Frahan, S. Varadan, E. Johnsen, J. Comput. Phys. 280 (2015) 489-509



15 Conclusions and Future Work

• Conclusions

• Extended existing unstructured simplex adapt code to include cell-based AMR

• AMR library written from the get-go with MPI + X parallelism in mind

• Demonstrated AMR abilities in FLEXO prototype code.

• Future Work

• Omega_h AMR

• MPI implementation (already in progress)

• Add different refinement templates (anisotropic AMR)?

• Coarsening

• FLEXO

• Radiation transport (already in progress)

• XMHD implementation (already in progress)

• MPI implementation using Omega_h

• Time-dynamic AMR meshes

• Local solution transfer operators during AMR

• Questions?


