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* Motivation for Ultra-wide Bandgap AlGaN electronic
devices

* Conduction loss-based metrics for incumbent and
emerging devices in power conversion

e Early History with depletion-mode transistors

* Recent demonstration of enhancement-mode transistors
* Challenges for Al-rich AlGaN transistors

* Summary
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UWBG semiconductors for Power Electronics

Silicon SiC UWBG

n/

c 2.7MVA

J <1 ton
0 <1m3

* Electrification of sensors, weapons and propulsion demand >100 kV, >1000 kA, or >100 MW
e Requires higher voltage, power density, and thermal margin than SiC or GaN provides
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Figure of Merit Differs for Lateral and Vertical Devices

Basis for FOM: Conduction Loss: Greater
voltage requires lower doping and longer drift
region (double whammy)

Baliga FOM (Vertical) Lateral FOM
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For comparisons between Vertical & Lateral devices, n, may somewhat
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. Numerical Comparison of GaN Lateral and Vertical Devices

Baliga FOM (Vertical): Lateral FOM:
&, &, =(8.85x 1014 )*(9) F/cm #=1500 cm?/Vs
1 =1500 cm?/Vs n,=1x10%cm?
Both:
E..=4x10°V/cm
Ve _ 1, p3 Vir — qungEZ, .= 3.8 x 1010
R—:,, = eMEC ;= 2 x 10 Roney  AHMsEcrie= 3-8 X

Numerically similar in spite of extra E_,;, factor

Future plots will only include (Al)JGaN LFOM
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. Critical Electrical field scales dramatically with band gap

Band gap energy (E,) is a critical material property for power electronics
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AlGaN Alloy Mobilities are Smaller than Binary Alloys

AlGaN HEMT channel mobility
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Al Ga, N mobility increases markedly at x > 0.9

Binary alloy mobility drops markedly with (extreme) temperature
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25°C Figure of Merit for WBG and UWBG Devices

GaN GaOx Vert 70% Al = AIN

—Si —SiC GaOx Lat
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* SiC & GaN are well represented in current research
Ga,0; is not competitive as a lateral device — path to vertical??
* Everything beyond SiC and GaN is immature
e Al-rich lateral devices — this work
* AIN least mature - doping & conductivity issues
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e Early History with depletion-mode transistors
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D-mode Al, ,:Ga, <cN/ Al, ;Gag ;N HEMT
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25°C Transfer and Output Characteristics for “45/30” HEMT
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Baca et al. JSSST 6, S3010 (2017).

 Linear through the origin I-V due to ~2.5 x 10> {2-cm? Ohmic contacts
* Exceptional Iyy,,/Ipy ratio (1,,/1,) of 8 x 10°
* Very low gate leakage
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. Temperature Dependence of “45/30” Transfer and Output

Characteristics
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Baca et al. JSSST 6, S3010 (2017).
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* Drain current decreases monotonically with temperature
* Exceptionally low leakage current is invariant with temperature
e Subthreshold slope varies slightly with temperature
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.Temperature Dependence of “45/30” Imax Consistent with Mobility-

Dominated Transport
1.5

"'Ins' Vns slope

I los-Vps Slope, (R, ) (Normalized)
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Temperature (K)

Baca et al. JSSST 6, S3010 (2017).

* I..0 IpsVps slope, and (R, ) all track with temperature — suggestive of
electron mobility as the common factor
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. Temperature Dependence of “45/30” Subthreshold Slope Factor is

Near |deal
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Baca et al. JSSST 6, Q161 (2017).

e Assume model from Chung et al. DRC 2007, p. 111
* Consistent with D, = 1 x 101 cm™ (heterointerface defect density)
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D-mode Al 5:Ga, 1N/ Al ,Gag ;N HEMT
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Baca et al. JSSST 6, Q161 (2017).
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. Exceptional Leakage Characteristics over Temperature in D-mode

“85/70” HEMT
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* Exceptional ratio I/l ratio of 8 x 10° at -50°C

* Exceptionally low leakage current that increases with temperature and
E,=0.55eV

* Breakdown voltage exceeds 500 V and drain leakage current is
consistent with Frenkel-Poole conduction
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Extreme Temperature Operation of D-mode “85/70” HEMT
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Carey et al. submitted to IEEE Trans. El. Dev.

* Current density exceeds 120 mA/mm from increasing the forward gate
bias

* Retain excellent current modulation and over 50 mA/mm current
density when operated at 500°C
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. Mobility Trend over wide Temperature Range in (Al)GaN-channel

HEMT
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Carey et al. submitted to IEEE Trans. El. Dev.

* Mobility for Al-rich HEMT reaches near parity with GaN HEMT at 500°C
and is fairly flat from 200-500°C

* Suggests that you may be able to lessen the cooling requirements for
AlGaN electronics
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. On/Off Ratio of D-mode “85/70” HEMT is Favorable at Extreme

Temperature Operation
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Carey et al. submitted to IEEE Trans. El. Dev.

* Al-rich HEMT maintains excellent On/Off ratio at 500°C and GaN doesn’t
* On/Off ratio is fairly flat from 200-500°C

Albert Baca - agbaca@sandia.gov



. Extreme Temperature Figure of Merit for GaN & 70% AlGaN
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FOM for Al-rich HEMT is 16x superior to that for GaN at extreme temperature
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High Current Density D-mode HEMTs

85/65 D-mode HEMT 85/70 D-mode HEMT, 90 nm gates
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Klein et al. to be published
Long channel device, d-mode, larger n,, Slightly d-mode, > 250 mA/mm, higher electric
and 250 mA/mm fields with Lgg = 0.5 pm, Lgp = 2.0 um
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e Recent demonstration of enhancement-mode transistors
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First E-mode Al,,Gag 5N using F-Plasma Treatment

. 4um _Mm 4 ym " Motivated by Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)
S _ [ G | [ D
SIN 1 9] SiN ]
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, |
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1.6 um AIN D-mode HEMT gate stack D-mode HEMT gate stack
C0JZCI77

Sapphire Substrate

Ni Gate

AlGaN Barrier

AlGaN Channel

20 nm

F-plasma from reactive ion etch (through SiN): combination of AlGaN etch and
incorporation of F ions near the surface
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E-mode Al, ,Ga, 5N using F-Plasma Treatment
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Albert Baca - agbaca@sandia.gov




2"d Approach to E-mode AlGaN using p-type gate
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*  MOVPE-grown UID Al, ,sGa, -sN/Al, ;Ga, ;N (45/30) on Al, ;Ga,,N-on AIN-on saphhire
*  p-Aly5Ga,,N/Al, 4sGa, ssN/Al, sGa, ;N (p-30/45/30) heterostructures very resistive
e p-AlGaN gate defined by ICP etching and passivated with SiN
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First p+ gate E-mode p-30/45/30
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Little to no degradation of /_,, or R,, for E-mode vs. D-mode AlGaN HEMT
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. E-mode p-30/45/30 with excellent gate performance

E-mode 30/45/30 AlIGaN HEMT
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e Small hysteresis (~ 80 mV)
* Vanishingly small gate current
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. Challenges

* Ohmic contacts
e Substrates
* Dielectrics for high breakdown

Albert Baca - agbaca@sandia.gov



. Ohmic Contact Resistance increases with Al-composition

HEMT p. vs. AlGaN channel Al
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Klein et al. ECS JSSST 6 S3067 (2017).

Unlike Ga-rich AlGaN, Ohmic metal does not traverse the Al-rich AlIGaN barrier to reach 2DEG

1. Muhtadietal., IEEE EDL 38 914 (2017).
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AlGaN MESFETs solve contact problem...

HEMT p. vs. AlGaN channel Al
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Klein et al. ECS JSSST 6 S3067 (2017).

Al,Ga, ,N MESFETs achieve good contacts up to x = 0.75 using impurity doping

1. Bajajet al. IEEE EDL 39 256 (2018).
2.  Muhtadi et al., APL 110 193501 (2017).
3. Bajajetal., APL 109 133508 (2016).
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. ...but AlGaN MESFETs are fundamentally limited

AlGaN HEMT channel mobility Impurity-doped AlGaN:Si resistivity
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AlGaN MESFET < 100 cm?/Vs because impurity doping is inefficacious for x > 0.8
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. Polarization-induced three-dimensional doping solves u-p. problem

pr=V-P= AP/z
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AlGaN GaN

* Linearly graded Al composition leaves a uniform volume of space-charge p,
* Forms a three-dimensional electron slab, i.e. bulk doping
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. Polarization-induced 3-dimensional Doping Solves z-p. Problem

AlGaN PolFET
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* Polarization-doped field effect transistor! (PolFET) could achieve good p,
* Higher guthan MESFET
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. First Al-rich AlIGaN PolFET Ohmic Contact Characterization
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* Circular gate PolFETs with Ni/Au gate and Zr/Al/Mo/Au ohmics (1000 °C anneal)
* p.=1.1x103 Q-cm?from circular TLM analysis confirms linear ohmic behavior
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First Al-rich AIGaN PolFET Characteristics

0.70->0.85 PolFET I-V 0.70—>0.85 PolFET transfer characteristics
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Armstrong et al. JJAP 57 074103 (2018).

 First Al-rich AlGaN FET with 2> 200 cm?/V/s and linear ohmic contacts
e Excellent off-state behavior with vanishingly small gate leakage
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AlGaN PolFET Breakdown

0.70->0.85 PolFET breakdown
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Armstrong et al. JJAP 57 074103 (2018).

AlGaN PolFET has > 2x larger E_,;, vs. GaN without device optimization
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* Progress in Ohmic contacts — linear through the origin
contacts for 45/30 HEMTs and 70-85 PolFETs

e Current density exceeds 250 mA/mm in slightly
depletion-mode transistor with 90 nm gates

 Demonstrated first Al-rich enhancement-mode HEMT
with F-plasma treatment

* Demonstrated first AlIGaN-channel enhancement-mode
HEMT with p* gate (45/30) HEMT

 Demonstrated first Al-rich PolFET to alleviate mobility
cliff and improve Ohmic contacts

* Demonstrated E_;, > 200 V/cm at breakdown in Al-rich
PolFET, approximately 2 x E_.,(GaN)

 Demonstrated 500°C operation of an 85/70 HEMT with
16x improvement in FOM over GaN
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