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• Motivation for Ultra-wide Bandgap AIGaN electronic
devices

• Conduction loss-based metrics for incumbent and
emerging devices in power conversion

• Early History with depletion-mode transistors

• Recent demonstration of enhancement-mode transistors

• Challenges for Al-rich AIGaN transistors

• Summary
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UWBG semiconductors for Power Electronics

Silicon

• 2.7 MVA

• 6 tons

• 10 m3

SiC

ok,

• 2.7 MVA

• 2 tons

• 6.5 m3

UWBG

• 2.7 MVA

• <1 ton

• <1 m3

• Electrification of sensors, weapons and propulsion demand >100 kV, >1000 kA, or >100 MW
• Requires higher voltage, power density, and thermal margin than SiC or GaN provides
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Figure of Merit Differs for Lateral and Vertical Devices

Basis for FOM: Conduction Loss: Greater

voltage requires lower doping and longer drift

region (double whammy)

Baliga FOM (Vertical) Lateral FOM

V2br "

= EI-lEc5ritR 4 on,sp

V2br 2= atinsEcritR on,sp

1
4 EE cr it compares to qns

For comparisons between Vertical & Lateral devices, ns may somewhat

offset Ecrit
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Numerical Comparison of GaN Lateral and Vertical Devices

Baliga FOM (Vertical):

co cr = (8.85 x 10-14 )*(9) F/cm

,u = 1500 cm2/Vs
Both:

Ecrit = 4 x 106 V/cm

V br  
= 1 £11E c3rit= 2 x 1010

Ron,sp 4

Lateral FOM:

p= 1500 cm2/Vs

ns = 1 x 1013 cm-2

R on,sp
v br  

= qpnsEc2rit= 3.8 x 1010

Numerically similar in spite of extra Ecrit factor

Future plots will only include (Al)GaN LFOM
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Critical Electrical field scales dramatically with band gap

Band gap energy (Eg) is a critical material property for power electronics

Vb2r
R on,sp 2

Ims E crit

Ecrit (MV/cm)

Si

SiC 3.4

GaN 4.0

A10.3Ga0.7N 7.3

p-Ga203 8

A10.7Ga0.3N 12.7

AIN 17 ■

1
Bandgap energy (eV)

Nishikawa, et al., JJAP 46, 2316 (2007).
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AIGaN Alloy Mobilities are Smaller than Binary Alloys

2000

1500

CZ' 1000
E

500

AIGaN HEMT channel mobilitv l

0.2 0.4 0.6 0.8

Al mole fraction

Bajaj et al. APL 105 263503 (2014)

1.0

—Total

— Opt. Phonon

—Alloy

0.2 0.4

Al Mole Fir

GB

(-mum er ai., ./JJ I b, J.51.1.4 (LUII)

AlxGal_xN mobility increases markedly at x > 0.9

Binary alloy mobility drops markedly with (extreme) temperature
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25°C Figure of Merit for WBG and UWBG Devices
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• SiC & GaN are well represented in current research

• Ga203 is not competitive as a lateral device — path to vertical??

• Everything beyond SiC and GaN is immature

• Al-rich lateral devices — this work

•
1 
AIN least mature - doping & conductivity issues
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• Early History with depletion-mode transistors
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D-mode A10.45Ga0.55N/ A103Ga07N HEMT
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25°C Transfer and Output Characteristics for "45/30" H EMT
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Baca et al. JSSST 6, S3010 (2017).
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? o
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c .6
'cT3 10

-6 -4 -2
Gate Voltage (V)

• Linear through the origin l-11 due to —2.5 x 10-5 12-cm2 Ohmic contacts

• Exceptional IDMAxAMIN ratio (lon/loff) of 8 x 108

• Very low gate leakage
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Temperature Dependence of "45/30" Transfer and Output
41!. 
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Baca et al. JSSST 6, S3010 (2017).

= 2 V

8 10

-10 -8 -6 -4 -2
Gate Voltage (V)

• Drain current decreases monotonically with temperature

• Exceptionally low leakage current is invariant with temperature

• Subthreshold slope varies slightly with temperature

2

ENERGY
RA Iraq"
V A lek?fr-9 Albert Baca - agbaca@sandia.gov 12



Temperature Dependence of "45/30" !max Consistent with Mobility-
9011•1. '0 .1  •• 

1.5

;-4

LOO 250 300 350 400
Temperature (K)

Baca et al. JSSST 6, S3010 (2017).

450 500

• Imax, las-Vas slope, and (RSh)-1 all track with temperature — suggestive of
electron mobility as the common factor
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Temperature Dependence of "45/30" Subthreshold Slope Factor is
• - . 

AIGaN-channel HEMT
---Ideal Case

w'
✓r

-

.00

300 350 400 450
Temperature (K)

Baca et al. JSSST 6, Q161 (2017).

500

k qD 
tS = 

T 
(— ln10) (1 + 

c i
)

qD 
S = T (- ln10) (1 + 

c i
t)

• Assume model from Chung et al. DRC 2007, p. 111

• Consistent with Dit = 1 x 1011 cm-2 (heterointerface defect density)
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D-mode A10.85Ga0.15N/ A107Ga03N H EMT
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Baca et al. JSSST 6, Q161 (2017).

8 10

• Very little hysteresis

• Greater difficulty in Ohmic contact
formation leads to offset voltage and
further limitation of drain current
potential
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Exceptional Leakage Characteristics over Temperature in D-mode
"85 70" HEMT
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Baca et al. JSSST 6, Q161 (2017).
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500

• Exceptional ratio loiloff ratio of 8 x 109 at -50°C

• Exceptionally low leakage current that increases with temperature and
E A = 0.55 eV

• Breakdown voltage exceeds 500 V and drain leakage current is
consistent with Frenkel-Poole conduction

600
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Extreme Temperature Operation of D-mode "85/70" HEMT

120

30

20

25°C
V =10 V

Step- -1 V

40 60

VDs(V)

80

Carey et al. submitted to IEEE Trans. El. Dev.
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Step: -1 V

20 40 60 B 0
V„ (V)

120

90

E

a
30

504°C
V =10 V

Step: -1 V

20 40 60 80

Vos(V)

• Current density exceeds 120 mA/mm from increasing the forward gate

bias

• Retain excellent current modulation and over 50 mA/mm current

density when operated at 500°C
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Mobility Trend over wide Temperature Range in (AI)GaN-channel

HEMT

1500

•
Z1000

500

0
0 100 200 300 400 500

Temperature (°C)
Carey et al. submitted to IEEE Trans. El. Dev.

• Mobility for Al-rich HEMT reaches near parity with GaN HEMT at 500°C
and is fairly flat from 200-500°C

• Suggests that you may be able to lessen the cooling requirements for

AIGaN electronics
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On/Off Ratio of D-mode "85/70" HEMT is Favorable at Extreme
Tem •erature 0 •eration

1011
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r GaN H EMT
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•

0 100 200 300 400 500
Temperature (°C)

Carey et al. submitted to IEEE Trans. El. Dev.

• Al-rich HEMT maintains excellent On/Off ratio at 500°C and GaN doesn't

• On/Off ratio is fairly flat from 200-500°C
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Extreme Temperature Figure of Merit for GaN & 70% AIGaN
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FOM for Al-rich HEMT is 16x superior to that for GaN at extreme temperature
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High Current Density D-mode HEMTs

85/65 D-mode HEMT

300

250.
Slap site - -4N %

E 235000
E 2°9'
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0 El2
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\0, I \ C.)
E

50
Muhtadi et al. EDL 38, 914 (2017)

85/70 D-mode HEMT, 90 nm gates

VG = 10, 8, 6, 4, 2, 0, -5, -10, -15, -20 V

10 15 20
Drain Voltage (V)

Klein et al. to be published

25

10 V -

30

Long channel device, d-mode, larger ns, Slightly d-mode, > 250 mA/mm, higher electric

and 250 mA/mm fields with LSG = 0.5 j_tm, LGD = 2.0

lel a itAYSLI r Albert Baca - agbaca@sandia.gov 21



• Recent demonstration of enhancement-mode transistors
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First E-mode A107Ga03N using F-Plasma Treatment

4 
1 

ci N

4

SiN 
0 nrn A 0 Ga0.15N: Si

330 nm A10.7Ga0.3N UID

1.6 jim AIN

Sapphire Substrate

Motivated by Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)

A u
N 

D-mode HEMT gate stack

A u
IP IP Ki IP IP

• F- ion

D-mode HEMT gate stack

COJZC977
VNA5814aQC

Si N

Gold

Ni Gate

AIGaN Barrier

AIGaN Channel

20 n m

F-plasma from reactive ion etch (through SiN): combination of AlGaN etch and
incorporation of E ions near the surface
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E-mode A107Ga03N using F-Plasma Treatment
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Final v-rH
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thickness
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109 1150)
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209 300

F-plasma from reactive ion etch (through SiN, then into AIGaN): Vth shift is a

combination of AIGaN etch and incorporation of P ions near the surface
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2nd Approach to E-mode AIGaN using p-type gate

D-mode 45/30 HEMT
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7
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Drain
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1.0E+17

AIN on sapphire

cu
E° 1 0E+16
co
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1.0E+14

.

0 0 0.1 0.2 0.3 0 4

Depth (um)

Source

E-mode p-30/45/30 HEMT

p-30% AIGaN

1000Å

45%AIGaN

(500Å, uid)

30%AIGaN

AIN

Sapphire

Gate
(Ni/Au)

p-AlmGamN

P110.45Ga0.55N

2.5E-10

2.0E 10

5.0E-11

0.0E+00

-10.0 -8.0 -6.0 -4.0 -2.0 0 0

Voltage (V)

Drain
SIN (Ti/Al/Ni/Au)

AIN on sapphire

2DEG not evident

Rsh > 30,000 S2/sq

• MOVPE-grown UID A10.45Ga0.55N/A10.3Ga0.7N (45/30) on A10.3Ga0.7N-on AIN-on saphhire

• p-A10.3Ga0.7N/A10.45Ga0.55N/A10.3Ga0.7N (p-30/45/30) heterostructures very resistive

• p-AIGaN gate defined by ICP etching and passivated with SiN
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First p+ gate E-mode p-30/45/30

/-V of D-mode 45/30 AIGaN HEMT

80
80
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Lsg = 4 um
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if:// = 0 V _

40
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V

10 V = - 0
0

V < -1

-10 -20
0 4 6

Vps (V)

8

Klein et al., ECS JSSST 6 S3067 (2017).

10

-V of E-mode 30 45 30 AlGaN HE

Lsg = 4 pm

- Lg = 2 ,um
Lad = 4 pm

Vth = 0 V

Vgs = +8 V

V = +6 V

Vgs = 0 V

2 4 6 80  10
Vd (V)

Douglas, et al., DRC, Santa Barbara, CA, June 25, 2018

• Vth = V

• Little to no degradation of /max or Ron for E-mode vs. D-mode AIGaN HEMT
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E-mode p-30/45/30 with excellent gate performance

105
E-mode 30/45/30 AlGaN HEMT

V
d
=1OV

102 /„//off

I gs = 3 nA/mm at +8 V Vgs

-1 0 -5

• Small hysteresis (— 80 mV)

• Vanishingly small gate current

0
Vg (V)

5 1 0
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• Ohmic contacts

• Substrates

• Dielectrics for high breakdown
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Ohmic Contact Resistance increases with Al-composition

Source
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HEMT pc. vs. AIGaN channel Al
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* This Work SNL_
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•
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x Al °,, Composition (AlGaN)

Klein et al. ECS JSSST 6 S3067 (2017).

1

Unlike Ga-rich AIGaN, Ohmic metal does not traverse the Al-rich AIGaN barrier to reach 2DEG

1. Muhtadi et al., IEEE EDL 38 914 (2017).
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AlGaN MESFETs solve contact problem...

Source

AIGaN MESFET

Gate

A10.7Ga0.3N

Drain

1 Channel

HEMT pc. vs. AIGaN channel Al

1 02

1 0-8

Channel

• AIGaN Channel HEMT
• GaN Channel HEMT
N AIGaN Channel MESFET SNL
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• SNL 11• • 0S113't •• • •• •• . •. ......, .
,

0 0.2 0.4 0.6 0.8
x Al % Composition (AlpaN)

Klein et al. ECS JSSST 6 S3067 (2017).

1

AlxGal_xN MESFETs achieve good contacts up to x = 0.75 using impurity doping

1. Bajaj et al. IEEE EDL 39 256 (2018).

2. Muhtadi et al., APL 110 193501 (2017).

3. Bajaj et al., APL 109 133508 (2016).
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...but AIGaN MESFETs are fundamentally limited

2000

1500

CZ' 1000
E

500

AIGaN HEMT channel mobility

300 K

O

0.0 0.2 0.4 0.6 0.8 1.0

Al mole fraction

Bajaj et al. APL 105 263503 (2014)

Impurity-doped AIGaN:Si resistivity

Mehnke et al. APL 103 212109 (2013)

AIGaN MESFET,u< 100 cm2/Vs because impurity doping is inefficacious for x > 0.8
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Polarization-induced three-dimensional doping solves p-pc. problem

pTh = V • P = dPlz

10 1

10"

io"

1 T
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T

CB

Fermi Level
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Apparent slectron
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urface cocCocb,
epletion 3DES °°° 0

Jena et al. APL 81 4395 (2002).

VB.

• Linearly graded Al composition leaves a uniform volume of space-charge jo,
• Forms a three-dimensional electron slab, i.e. bulk doping

2

o
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-2 c
li1

-4
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Polarization-induced 3-dimensional Doping Solves ,u- p c. Problem

pTh = V • P = dPlz

V

1 J„
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AIGaN PoIFET
Gate Drain
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2000

1500
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500

AIGaN mobility
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Bajaj et al. APL 105 263503 (2014)

3DES

Channel

• Polarization-doped field effect transistor1 (PoIFET) could achieve good pc.

• Higher ,uthan MESFET

ENERGY
1=Ir

INVA'1.?fr-4 Albert Baca - agbaca@sandia.gov 33



First Al-rich AIGaN PoIFET Ohmic Contact Characterization
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Klein et al. ECS JSSST 6 S3067 (2017).

• Circular gate PoIFETs with Ni/Au gate and Zr/Al/Mo/Au ohmics (1000 °C anneal)

• pc = 1.1 x 10-3 f2-cm2 from circular TLM analysis confirms linear ohmic behavior
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First Al-rich AIGaN PoIFET Characteristics
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Armstrong et al. JJAP 57 074103 (2018).

0.700.85 PolFET transfer characteristics
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• First Al-rich AIGaN FET with ,u> 200 cm2/V/s and linear ohmic contacts
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AIGaN PoIFET Breakdown
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Armstrong et al. JJAP 57 074103 (2018).

AIGaN PoIFET has > 2x larger Ecrit vs. GaN without device optimization
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• Progress in Ohmic contacts — linear through the origin

contacts for 45/30 HEMTs and 70-85 PoIFETs

• Current density exceeds 250 mA/mm in slightly

depletion-mode transistor with 90 nm gates

• Demonstrated first Al-rich enhancement-mode HEMT

with F-plasma treatment

• Demonstrated first AIGaN-channel enhancement-mode
HEMT with p+ gate (45/30) HEMT

• Demonstrated first Al-rich PoIFET to alleviate mobility

cliff and improve Ohmic contacts

• Demonstrated Ecrit > 200 V/cm at breakdown in Al-rich

PolFET, approximately 2 x Ecrit(GaN)

• Demonstrated 500°C operation of an 85/70 HEMT with

16x improvement in FOM over GaN
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