
Using Loops For Malware Classification Resilient to
Feature-unaware Perturbations

Aravind Machiry
UC Santa Barbara

machiry@cs.ucsb.edu

Yanick Fratantonio
EURECOM

yanick.fratantonio@eurecomf r

Nilo Re dini
UC Santa Barbara

nredini@cs.ucsb.edu

Yung Ryn Choe
Sandia National Laboratories

yrchoe@sandia.gov

Giovanni Vigna
UC Santa Barbara

vigna@cs.ucsb.edu

ABSTRACT

In the past few years, both the industry and the academic com-
munities have developed several approaches to detect malicious
Android apps. State-of-the-art research approaches achieve very
high accuracy when performing malware detection on existing
datasets. These approaches perform their malware classification
tasks in an "offline scenario; where malware authors cannot learn
from and adapt their malicious apps to these systems. In real-world
deployments, however, adversaries get feedback about whether
their app was detected, and can react accordingly by transforming
their code until they are able to influence a classification.

In this work, we propose a new approach for detecting Android
malware that is designed to be resilient to feature-unaware pertur-
bations without retraining. Our work builds on two key ideas. First,
we consider only a subset of the codebase of a given app, both for
precision and performance aspects. For this paper, our implemen-
tation focuses exclusively on the loops contained in a given app.
We hypothesize, and empirically verify, that the code contained in
apps' loops is enough to precisely detect malware. This provides
the additional benefits of being less prone to noise and errors, and
being more performant.

The second idea is to build a feature space by extracting a set of
labels for each loop, and by then considering each unique combina-
tion of these labels as a different feature: The combinatorial nature
of this feature space makes it prohibitively difficult for an attacker
to influence our feature vector and avoid detection, without access
to the specific model used for classification.
We assembled these techniques into a prototype, called LooPMC,

which can locate loops in applications, extract features, and perform
classification, without requiring source code. We used LooPMC to
classify about 20,000 benign and malicious applications. While
focusing on a smaller portion of the program may seem counter-
intuitive, the results of these experiments are surprising: our system

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor, or affiliate of the United States government. As such, the United
States government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for government purposes only.
ACSAC '18, December 3-7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12... $15.00
https://doi.org/10.1145/3274694.3274731

Eric Gustafson
UC Santa Barbara

edg@cs.ucsb.edu

Christopher Kruegel
UC Santa Barbara

chris@cs.ucsb.edu

achieves a classification accuracy of 99.3% and 99.1% for the Mal-
ware Genome Project and VirusShare datasets, which outperforms
previous approaches. We also evaluated LooPMC, along with the
related work, in the context of various evasion techniques, and
show that our system is more resilient to evasion.

ACM Reference Format:

Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio, Yung

Ryn Choe, Christopher Kruegel, and Giovanni Vigna. 2018. Using Loops

For Malware Classification Resilient to Feature-unaware Perturbations. In

2018 Annual Computer Security Applications Conference (ACSAC '18), De-

cember 3-7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3274694.3274731

1 INTRODUCTION

In the past few years, both the industry and the academic communi-
ties have developed several approaches to perform malware detec-
tion. State-of-the-art research approaches, which leverage static and
dynamic analyses, are known to detect malware on existing datasets
accurately. Techniques such as behavior-based signatures [46], dy-
namic taint tracking [21], and static data flow analysis [8, 25] are
designed to locate specific symptoms or traces of malicious behavior
(e.g., reading SMS data) in programs.

However, these approaches make the unrealistic assumption that
malware authors are unaware that their code is being analyzed,
or are unable to react to their code being classified as malicious.
Consider, for example, Google Bouncer [32], which serves as the
primary gatekeeper for Android apps published in Google's Play
Store. Developers submitting apps will be notified if the system
deems their app to be suspicious, allowing them to modify the
app and resubmit it again. This simple model gives attackers the
opportunity to learn and adapt their apps to hide malicious actions
from a particular detection methodology. While the attacker may
know some information about how Bouncer works, they do not
have access to Bounder's models or detection rules, and must infer
them through trial and error.

This work proposes a new technique to perform malware de-
tection of Android apps that are resilient against feature-unaware
perturbations, such as those in the above scenario. Our work builds
on two key ideas. First, we consider only a subset of the codebase
of a given app, both for precision and performance aspects. For

SAND2018-10653C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

ACSAC '18, December 3-7, 2018, San Juan, PR, USA A. Machiry et al.

this paper, we focus exclusively on the loops contained in a given
app. We hypothesize, and empirically verify, that the subset of a
program contained in its loops encodes enough information to per-
form accurate malware detection. Loops are a key construct when
writing programs, and are a key factor in the Turing-completeness
of programming languages. Furthermore, loops are difficult to re-
move or obfuscate, and focusing on loops allows the analysis to be
more robust to evasion: A functionality that needs loops to be im-
plemented, cannot be implemented without one [13], even through
techniques such as loop unrolling. While it is well understood that
some loops can be transformed into equivalent structures, such as
using recursion, or a high-level primitive, there is still, conceptually,
a loop in the program for our analysis to find.
The second idea is to build a feature space by extracting a set

of labels for each loop, and by then considering each unique com-
bination of these labels as a different feature. For each loop, our
analysis first determines which Android API methods are invoked,
directly or indirectly. To aid our approach, we created a semantic
labelling mechanism that maps every Android API to one of 202
semantic labels. This mechanism is used to extract, for each loop, a
set of semantic labels. The unique combination of semantic labels is
then used to create a semantic tag, which conceptually encodes the
loop's core functionality. Finally, our system computes the app's
feature vector by encoding how many loops with each semantic are
contained in the app. As our approach creates a large number of
features, many of them may not have any impact on classification.
To mitigate this, we propose a method of iterative feature prun-
ing, based on Random Forest feature importance, which improves
performance, by reducing the number of features that need to be
considered. As clearly shown in Section 4, the combinatorial nature
of the considered features makes it prohibitively difficult for an
attacker to influence their app's feature vector and avoid detection
using feature-unaware perturbations.

Furthermore, when analyzing a previously-unseen, it may con-
tain loops whose combination of labels is not covered by any seman-
tic tag seen while training our model. This also provides a venue for
an attacker to evade the detection. For this reason, we developed a
new mapping strategy, which we call Conservative Mapping, that
selects the nearest semantic tag, and conservatively errs toward
semantic tags associated with maliciousness.
We assembled these techniques into a system, called LoopMC,

which can be used to analyze and classify large volumes of Android
applications, using only their bytecode. We evaluated our system
against over 20,000 real-world benign and malicious applications
both on the offline scenario, where an attacker receives no feed-
back, and an online scenario, where an attacker can modify the
application using various techniques to evade detection. Our ap-
proach can differentiate between the malicious and benign with
99.3% and 99.1% accuracy on two different datasets. Our experi-
ments show that our work achieves high accuracy, even when an
attacker is allowed to adopt their app in response to feedback from
the detection system. Even though our choice of focusing on loops
may seem counter-intuitive, our experimental evaluation shows
an improvement in malware detection accuracy over systems that
consider the entire codebase. Finally, we compare our work with
state-of-the-art malware detection systems, DroidAPlMiner and

Drebin. Not only do we show that our system outperforms them,
but we also show that it is easy to evade them.

In summary, this work provides the following contributions:

• We present a new approach to perform malware detection,
which is resilient to feature-unaware perturbations by using
machine learning models built with features extracted from
loops.

• We extensively evaluate our prototype 1, LoopMC, by con-
sidering a large dataset of over 20,000 benign and malicious
Android apps, and show that it can accurately identify mal-
ware.

• We show that our approach is effective even when consider-
ing an active adversary that can modify their app, while we
show that existing works significantly drop in accuracy.

2 THREAT MODEL

We frame our work in the context of a typical app store or app mar-
ket: developers submit apps to the stores operator to be approved
for distribution, only after undergoing some series of checks and
analyses. These analyses typically include those designed to pro-
hibit the spread of malware through the store. While some details
of the inner-workings of this system may be public, such as the
kind of machine learning or signature mechanism in use, the exact
features used, or what part of the app led to a classification, are
typically kept secret from developers. Even without these details,
the developer does gain an oracle against which to test future ver-
sions of their app. Therefore, we assume a threat model in which an
attacker is capable of feature-unaware perturbations, which includes
any modification that can be performed without specific knowledge
of the features used in a model or ruleset used for classification. The
attacker may know the method used to classify apps, such as the al-
gorithms in use, but not the contents of the actual model. Specific to
our work, this means an attacker may know that our system relies
on loops, the details of our supervised machine learning technique,
or the concept of semantic tags, but cannot know which semantic
tags are considered by the trained model.

Note that this is a more realistic and stronger threat model than
what has been considered by previous works, which we explore in
Section 8, where the attacker is agnostic to the detection method
and cannot reactively modify the app.

3 APPROACH OVERVIEW

LoopMC, whose high-level design is depicted in Figure 1, is a
machine-learning-based system that uses a set of labeled APKs to
train and create a model, which can then be used to detect malicious
Android applications (i.e., malware). Our system works through
several different stages, which are presented in this section. As
previously mentioned, our work is constituted by two main phases:
loop characterization, which performs program analysis to extract
information about the loops of a given app, and application classifi-
cation, which combines the information extracted in the first phase
and uses machine learning techniques to train a model for malware
detection. We provide an overview of the two main phases, each of
which will be discussed in detail in the two upcoming sections.

1www.github.com/ucsb- seclab/LoopMC

Using Loops For Malware Classification Resilient to Feature-unaware Perturbations ACSAC '18, December 3-7, 2018, San Juan, PR, USA

Android APKs

Model

Loop
Extraction

Semantic
Labels

LoopMC

Feature
Vector
builder

Semantic
Tags

t. Model
Trainer

Conservative
Mapping

•

Feature
Pruning

Iterative Feature
Pruning

100

90

so

70

6o
50

3,

30

20

10

0
0

Figure 1: LoopMC overview.

Methods in the App — Android API Method calls

26
90.48 93.95

30 46 50 do
% of Coverage

70 80 100

Figure 2: A CDF of the percentage of reached methods vs. the percentage of
different Android APIs invoked by only considering each app's loops. For 50%
of the apps in our dataset, loop code reaches only 30.48% of the methods, while
reaching 93.95% of the different Android API call sites in the app.

Loop Characterization. This phase gets as input an Android app
(i.e., an APK file), and it performs static analysis to extract all loops
in the app. The analysis then considers each loop and extracts which
Android framework APIs are invoked within the loop's body. Each
of the invoked API is then associated with a semantics-carrying
label. The unique combination of these labels forms a semantics tag.

Application Classification. The semantics tags extracted for each
loop are used to compose a feature vector. In particular, each ele-
ment of the feature vector encodes the number of loops that are
associated with a specific semantics tag. Due to the combinatorial
nature of the features vector, only a subset of all possible combi-
nations are considered. In our work, we create a feature for every
combination we observe durhig the training phase of the machine
learning models. Then, we developed a mapping mechanism that
allows us to take into account loops whose semantic tag has not
been seen during the training phase. Our approach then applies
supervised machine learning techniques to train a model to perform
malware detection.

3.1 Why Loops?

Before giving details of how LooPMC works, it is important to
linger on the benefits of focusing on loops. We conjecture that

loops represent an essential subset of the whole program and that
they can be used to infer interesting properties about the app, such
as whether it is benign or malicious. Loops, in the most general
sense, are made possible by a conditional branching structure and
the ability to jump backward in code. Repetition is such a basic
concept that most important algorithms simply cannot be expressed
without it.
On the one hand, focusing on loops has two advantages. First,

because of their fundamental nature, loops are more difficult to
remove or obfuscate than linear code [16, 27]. This aspect makes
loops good candidates to focus on. Second, as we will show in our
evaluation, focusing on loops offer a significant performance boost.
On the other hand, by only focusing on loops, one may be con-

cerned about missing important behavior of a given app. To this end,
we performed a simple empirical study to understand how much
relevant information is included in the loops of Android applica-
tions. To measure "relevant information," we consider two aspects:
the percentage of methods invoked or reached, directly or indirectly
(through other method calls), exclusively within apps' loops, and
the percentage of different Android APIs invoked within loops with
respect to the number of Android APIs invoked by the app when
considering the entire codebase. (As in many related works, e.g., [3],
Android APIs invoked by an app are used as a proxy to determine
its behavior.)
Our results, shown in Figure 2, are surprising: for 50% of the

apps in our dataset (discussed in Section 5), the apps' loops reach
only 30.48% of the methods they define, but invoke up to 93.95%
of the different Android APIs invoked by the app. In other words,
while loops do constitute a subset of the app's codebase, they cover
most of the different Android API call sites the app contains. It is thus
not surprising that, as discussed in our evaluation, the accuracy
results of our analysis do not improve when considering the entire
codebase with respect to only considering loops.

3.2 Loop Characterization

The first major task of our system is to transform an Android app
into a feature vector representing the behavior of its loops, in terms
of Android's APIs. This includes recovering the actual loop structure
from an app's bytecode, as well as how the loop's content is formed
into the final feature vector.

Loop Extraction. Given an APK, the very first step involves its
loops analysis and extraction. Particularly, LooPMC disassembles
the app's Dalvik bytecode and compute the APK's static control
flow graph (CFG), which is then used to locate the application's
loops. In our context, a "loop" is not just an instance of a looping
construct available in the programming languages (for, while, do,
etc.), but any cycle in the CFG. We leverage a well-known Depth-
First-Search-based (DFS) loop-finding algorithm [43] that reliably
detects all loops in the program. In our implementation we relied
on Androguard [17] to perform the above-mentioned steps.

Semantic Labels. In this work, we characterize a loop's effect on
the state of the program by determining which Android framework
APIs could be possibly invoked from its guard or body. This is
accomplished by considering the transitive closure of all guard and
body code, and consider all API method calls it contains. To this end,
we scan the bytecode for invoke instructions. In order to resolve

ACSAC '18, December 3-7, 2018, San Juan, PR, USA A. Machiry et al.

the actual function being called, we must determine the type of
the object whose method is being called, which may have more
than one solution. This effectively simulates dynamic dispatch, the
mechanism that, at run-time, determines which method to call
according to the dynamic type of the receiving object. To do this,
we perform a Class Hierarchy Analysis (CHA) to determine the
complete set of possible classes and the contained methods that
could possibly be invoked by the considered invoke instruction.
The number of possible Android API calls is very large, about

65,000, and determining the semantics of each of them is a chal-
lenging, open problem. What makes this aspect difficult is that
some APIs might perform functions unrelated to their name, class,
or package hierarchy. On the other hand, two APIs with similar
names might perform very different tasks. To solve this, we as-
sign to each Android framework API a semantic label. In particular,
we defined a set of 202 semantic labels, which assign a seman-
tics to the net effects of each API invocation. For example, the
method saveAttributes() of android.media.ExifInterface is
assigned the label i oWr ite as it is used to write EXIF tags to a JPEG
file, which in effect is a file writing operation. As a starting point,
we considered results generated by automatic tools proposed by
previous research [7, 9]. We then carefully examined the Java and
Android documentation to assign labels to every API method that
we encountered in our dataset. Fortunately, not every individual
API needs to be labeled separately, and we can map several classes
and methods to a label through simple pattern matching.

Although this process was mostly manual and tedious, it is a
one-time effort and is needed to address several imprecisions that
necessarily occur when using automatic tools. We released 2 the
"Semantic Labelling Mappine code and data, accompanied by the
information on how to extend it. We aim to make this a community-
driven effort, which could be useful even outside the scope of our
work.

Semantic Tags. As the final step to characterize each loop, we
consider the unique combination of its semantic labels to create
what we call a semantic tag. In particular, we only consider whether
a specific semantic label is used or not. Intuitively, the number of
times a certain label appears is not significant, since the code in a
loop is meant to be repeated. Note that, a semantic tag represents a
dimension in the feature space on which our Model Trainer works.
In other words, a semantic tag is a feature in the APK's feature
vector.

3.3 Application Classification

The second phase of the system involves using the set of semantic
tags for an app to classify it as malicious or benign. Each element of
the feature vector encodes the number ofloops that are associated to
a specific semantic tag. In our work, we first create a feature for each
semantic tag we observed during the training phase of our model.
We may not have seen all the possible semantic tags during training,
to handle this we developed a mapping mechanism that allows us to
take into account the loops whose semantic tag has not been seen
during the training phase. Our approach then applies supervised
machine learning techniques to perform malware detection.

2www.github.com/ucsb-seclab/LoopMC

Feature Vector Builder. To classify entire apps, we need a way
of capturing what each app as a whole does, using the features we
collected. For each app, we record the number of different loops
sharing the same semantic tags. In this context, we do take into
account the repetitions of the same feature, since they represent
additional code within the app.
As an example, consider an app with five different loops

with the following semantic tags: two loops with the seman-
tic tag {database, string, datastructure} and one each
of {iterator, genericFile0p, datastructure}, {database,
UI}, and {networkRead , string , UI}. Assuming that these four
are the only semantic tag in our dataset, the app's final vector would
be {2, 1 , 1 , 1 }. Of course, in a real scenario, we would have many
more features, and so the vector would be very long and sparse (i.e.,
many feature values would have value zero).

Model Trainer. We have a large feature space because of the com-
binatorial nature of semantic tags, and this makes the feature selec-
tion infeasible. However, feature selection is a required step to apply
well-known classifications algorithms based on k-nearest neigh-
bors, support vector machines and neural networks. Furthermore,
these algorithms do not provide insight into the importance of
each feature, which we use in our conservative mapping to handle
unknown features [5].

Therefore, a decision tree-based system was a natural choice, as
it does not depend on the meaning of distance in the feature space
(in our feature space the concept of distance is meaningless), and
provides importance measures for each of the features [5]. Conse-
quently, we applied the Random Forest algorithm to the extracted
features to create a model for detection.

Note that, though in principle decision-tree-based algorithms
suffer from the curse of dimensionality [28] due to a big feature space
(like ours), Random Forest tackles this problem [37] by employing
an ensemble of decision trees as well as the bootstrapping scheme.
In fact, as clearly shown in Section 5, even when the feature space
is drastically reduced from dozens of thousands of features to a few
dozens, the decrease in accuracy is either irrelevant or non-existent.

Also note that our system can also handle feature vectors that
do not align with those used to build the model, as described later
in this very section. For details about how Random Forest models
are trained and evaluated, we direct the reader to the exhaustive
documentation on the topic [10-12, 33].
Random Forest has few parameters to tune, and of these, only

the number of trees had any meaningful impact on our experiments.
We explored the optimal number of trees to use in the ensemble and
found that after 50 trees, accuracy changes became insignificant,
oscillating within 0.05%. All model-building is done under 10-fold
cross-validation, which was determined to be optimal for real-world
datasets in [29]. Accuracy is reported as the maximum accuracy of
the ten models.

Iterative Feature Pruning. We implemented an approach to fea-
ture pruning that provides for a degree of scalability, enhanced
accuracy, and gives new insights into the data. While the feature-
space of our data is somewhat large, many of these features do not
have any effect on whether the sample is malicious or benign, in
any possible context.

Using Loops For Malware Classification Resilient to Feature-unaware Perturbations ACSAC '18, December 3-7, 2018, San Juan, PR, USA

We propose a method of iterative pruning that removes unimpor-
tant features from the model, without using arbitrary thresholds.
First, we train a model, using all of the features in our dataset. Then,
we calculate the importance [24] of each feature, and remove those
that we know have no effect on classification (i.e., have an impor-
tance of zero across all trees). Finally, we retrain a new model, only
considering the remaining features, and repeat the process until no
additional features can be removed. In simple words, we can say
that a feature is more important if it produces a better split between
the two classes. This approach is similar to the non-iterative one
proposed by Appel et al. [4], although as we will show in Section 5,
the iteration allows us to remove even more under-performing
features.

Conservative Mapping. When built with a large-enough initial
dataset, our model should ideally contain the vast majority of possi-
ble semantic tags that will be seen in Android applications. However,
we must account for the cases where a combination of API calls
results in a semantic tag that is not part of the feature vectors. This
can happen simply in the natural course of writing programs, but
also due to a deliberate attempt to evade detection. In the default
case, where only semantic tags in the original model are considered,
this could lead to a decrease in accuracy over time.

To mitigate the effects of this potential attack strategy, our sys-
tem supports a second mode of classification, which minimizes
these issues, at a very slight accuracy penalty. In this mode, we
construct a model using only the features that are considered im-
portant to the classification of a malicious sample. First, we build a
model, using the standard procedure described previously in this
very section. From this model, we then determine the Malware Im-
portance, or MI, of each feature. Finally, we construct a new model,
using only those features whose MI is greater than zero. To classify
unknown samples, we map new features to those in the model, with
a bias toward mapping to those with a higher MI.
The above process hinges on the computation of the Malware

Importance, which is a non-negative real number indicating the
importance of a feature in deciding that a sample is malicious. This
is built on top of the traditional concept of feature importance in
Random Forests [24].

For each non-leaf node (cn) in a decision tree of the model,
which contains a feature test of the form value(semantic_tag) >
threshold_value (where value(semantic_tag) is the value of the
feature represented by semantic_tag), the MI is computed as fol-
lows:

MS(tc)—MS(fc)

{
if MS(tc)>MS(fc)NrootMI(semantic_tag) = 0
otherwise

where Nroot is the number of samples (both malware and benign)
at the root node of the decision tree, tc and f c are the sub-trees tra-
versed when the feature test is true or false respectively and MS in-
dicates the number of malware samples that reached the node in the
corresponding decision tree during training. If MS(tc) > MS(f c),
more malware samples have values of the feature (or semantic tag)
above the corresponding threshold_value, which captures the no-
tion of local importance. Dividing by Nroot brings in the effect of
the position of the feature in the decision tree, thus capturing a
feature's global importance.

Semantic tag or Features MI

<iterator > 0

<sms, iterator > 0.32

<audio > 0

<androidCursor > 0

<reflection, ioWrite, networkRead > 0.013
<ioWrite, networkRead > 0.004

eioWrite, ioRead > 0.00016

<reflection, iterator, networkRead > 0.023

<ioRead > 0

Table 2: Example of set of semantic tags with corresponding MI

Obfuscation Conservative Mapping

Disguise ems call under

A..10.1.031 #4,iterator, #4,iterator> #4,<iterator>

s,

futilellen

#1,reflection,
iterator<

A.04, MfPF+% #1,rellection,
iterator,

networkRead<

<reflection, loWrite,
networkRead<

3,reflesson, loWrite,
networkRead,
genencFileOps

alVeAMPFI% #3:<re0ection,
ioWrite,

networknead<

Loop sple end maroon e
M. ma-structure cas AWY MeG1.11

#1 0,<iownte,
netwofkRead<

#20:<lowrite.
networkRead>

0
Original app Obfuscated app Remapped Semantic

tags

Figure 3: Conservative Mapping example

If a feature is used in more than one tree, we pick the maximum
value of the MI across all trees in the forest.

With the importances calculated, we can then perform the Con-
servative Mapping step. For a given semantic tag (i.e., src), we find
the closest semantic tag (i.e., dst) with the least symmetric differ-
ence in their labels and a non-zero MI. We resolve ties by picking
the tag with the greater MI.

Here we will present a realistic example of the Conservative
Mapping in action. Table 2 shows the entire set of semantic tags
found in the hypothetical dataset of apps used for training. Figure 3
depicts what would happen when an app with loops of these tags are
obfuscated through various strategies, as well as how our mapping
handles unknown tags this process creates. The first box of this
figure represents a malware sample whose loops are represented
in the form #number_of _loops :< semantic_tag >. The feature
vector corresponding to features in Table 2 is: <4,1,0,0,3,10,0,0,0>.
As shown in this figure, the attacker adds useless API calls in the
body of two existing loops disguises an SMS-related API call with
the use of reflection, and finally splits a loop into two different
loops, adding a useless API call in both of them. The resulting app
is shown as the second box in Figure 3. Using the default mapping,
where unseen semantic tags are ignored, the feature vector would
be <4,0,0,0,0,0,0,0,0>, resulting in benign classification. However, by
enabling Conservative Mapping, the obfuscated loops would map
to a different set of semantic tags based on the Malware Importance.
The resulting feature vector is: <4,0,0,0,3,20,0,1,0>, consequently
classifying the app as malicious. Table 1 shows the reasons the
semantic tags represented in the third box of Figure 3 were chosen

ACSAC '18, December 3-7, 2018, San Juan, PR, USA

API label Best semantic tag matched Reason
<iterator > <iterator > Exact Match

<reflection, iterator > <reflection, iterator, networkRead > Closest tag with a higher MI

<reflection, ioWrite, networkRead, genericFileop > <reflection, ioWrite, networkRead > Closest tag

<ioWrite, dataStructure > <ioWrite, networkRead > Closest tag with a higher MI

<networkRead, dataStructure > <ioWrite, networkRead > Closest tag

Table 1: Tag matching procedure

from the semantic tags provided by this particular system (Table 2).
The conservative mapping, as we will show in Section 5 may raise
the false-positive rate, but also allows our system to easily withstand
code obfuscation attacks.

4 RESILIENCE TO FEATURE-UNAWARE

PERTURBATIONS

This section discusses the resiliency of LooPMC against various
evasion attempts. Since the features of the app have been compo-
nentized into their loops, merely spraying API calls into a method
does not skew the app's features, as it does with the related work.
However, there are other evasion techniques that an adversary
could pursue if they were aware of our system.

4.1 Application Transformations

The transformations, while simple to implement and perform,
have a dramatic impact on the detection rates of off-the-shelf
anti-malware solutions. Table 3 shows a list of the transforma-
tion techniques available in DroidChameleon [38], their effects on
the program, and their effect on the classifications performed by
LooPMC. First, any transformation that merely alters the data or
human-readable strings of the app, such as string encryption or
class renaming, has no effect whatsoever on our system's feature
vectors. Second, LooPMC considers the transitive closure of a loop's
code, and Call Indirection and in/outlining will not affect it. Our
system would be affected by bytecode encryption, as the original
bytecode is simply unavailable to static analysis. However, the mere
decrypting, loading, and executing bytecode can be used as a strong
signal to detect Android malware [20, 26, 36]. We note that this
may not be true for classic desktop malware [2].

4.2 CFG Obfuscation

While LooPMC is resilient to many program transformations, one of
the more interesting aspects of its performance involves mutation
of the program's control-flow graph (CFG). CFG obfuscation works
by adding unfeasible random forward and backward jumps, which
may appear as loops. This represents a worst-case scenario for our
system, as similar work that leverages program-wide sets of API
calls are unaffected. Changing the CFG can impact how loops are
extracted, and change our feature vectors. However, as we will show
in Section 5, we are still able to detect malicious apps correctly.

4.3 Reflection

One way in which an attacker can evade an API based malware
analysis systems is through the use of Reflection to hide method
calls. This could happen by converting some or all API calls to
the equivalent expression using j ava . lang . reflect . Method and

A. Machiry et al.

similar. This would, at a minimum, allow an attacker to alter the
features extracted by any system that uses API calls, including ours.

In a simplistic scenario, an attacker could use one of the many
tools [14] available for Java programs to automate the obfuscation
and transform all method calls into reflection. These tools provide
an easy way to evade all API call-based detection systems. Complex
string analysis is required to resolve the invoke targets, and main-
tain accuracy. Secondly, a clever attacker can convert some API
calls which they believe to be the most malicious into reflection.
For example, the adversary may choose to obfuscate only methods
dealing with sending and receiving SMS, a popular feature of An-
droid malware [47]. We explore both scenarios experimentally in
Section 5.

4.4 Loop Perturbations

0 8

2 0.6

10 20

Figure 4: Relation among n, pa, f and p.

In a real-world deployment of our system, the attacker may per-
form Loop Perturbations, which we define as the ability to modify
their program, by knowing the LooPMC algorithm, but without
the detailed knowledge of the model being used (i.e., the employed
feature vector is unknown). We further define these to be passive
perturbations (e.g., those that do not affect the app's overall be-
havior). Specifically, we consider spurious code insertion [35], as
it is much simpler to generate meaningless code without concern
for the impact on the program's execution. We will evaluate the
difficulty for an attacker to evade our system. As a difficulty metric,
we can compute the probability that randomly-inserted code with
API calls in loops can influence the feature vector.

Let's consider n to be all possible features available to the model,
and f to be the number of important features selected by the un-
derlying detection system to classify the app. For a given n, we
estimate the number of features (p) to be chosen from n, so that at
least one of the features will be in f with some probability (Pa). The

Using Loops For Malware Classification Resilient to Feature-unaware Perturbations ACSAC '18, December 3-7, 2018, San Juan, PR, USA

Transformation Name Description
LoopMC
is Re-

silient?
Comments

Changing Package Name
Package name is changed in

AndroidManifest
YES

LoopMC does not use the
Manifest file

Identifier Renaming
field names (both local and static) are

renamed
YES

LoopMC does not rely on the
names of any fields.

Data Encryption
Strings and Data used in the code are
encrypted and decrypted in place.

YES LoopMC is data-agnostic.

Call Indirections Add wrapper functions to API calls YES
Transitive closure ignores

indirection.

Code Reordering

Reordering the instructions and
inserting goto instructions to preserve
the runtime execution sequence of the

instructions

YES
Content of loops is preserved.

Algorithm [43] for loop
detection is resilient to this.

Junk Code Insertion
Insert junk code which does not affect

the semantics
YES

LoopMC only considers calls
to API methods

Function Outlining and Wining
Split a function into multiple functions
and Replace a function call with the

entire function body
YES

Transitive closure adds
resilience to this.

Encrypting Payloads and Native
Exploits

Code is stored as encrypted blob,
decrypted at run time and executed.

NO
Our analysis is static and fails
to identify the execution of

decrypted code.

Bytecode encryption

Relevant piece of the application code is
stored in an encrypted form and is

decrypted at runtime via a decryption
routine

NO

Presence of decryption
routine at the start of an

application could be used as
an indication of malware.

Table 3: Evaluation of LoopMC against various Application Transformations

relation between, p,n,f and Pa is given by the following equation:

Pa =

(n f)

P f fn-D >13

otherwise

The first case of the above equation represents the probability of
affecting at least one feature. The second case handled the scenario
when we chose more than (n — f) features, where we can guarantee
that at least one feature will be in f .
Here, n represents the choices available for the attacker, f (g n)
is the secret set of items that they have to guess, p represents the
number of items to be chosen from n where they could be reasonably
sure (Pa > 0) that one of the items belongs to f . From the above
equation, the following observations could be made:

(1) For a fixed n and Pa, increasing f decreases p (i.e., f oc

(2) For a fixed f and Pa, increasing n increases p (i.e., n oc p).
(3) For a fixed n and f , increasing p increases Pa (i.e., p oc Pa).
(4) For a fixed n and p, increasing f increases Pa (i.e., f oc Pa).

Figure 4 illustrates these observations with some sample values for
n and f . In Section 5.5, we show how our features make it relatively
hard to evade detection by our system using blind perturbations.

Note that in the above equation, we assume a uniform distribu-
tion of all the features. However, in practice, the features may be
biased based on common characteristics of Android malware, which
could affect Pa. For instance, the probability of having { iterator ,
sms} in the model is more than { te ra tor , u j ectRead}. How-
ever, as we show in Section 5.5, our n is very large, which minimizes
this effect.

5 CLASSIFICATION EVALUATION

In this section, we evaluate LooPMC's effectiveness at classifying
malicious apps only based on information in their loops. First, we
will explore the performance of LooPMC at classification, including
an isolated evaluation of Iterative Feature Pruning and Semantic
Labeling. We will then show the resilience of our system, compared
to previous work, in a scenario where an attacker can obfuscate
the CFG of applications.

As we discuss in Section 8, our work most closely relates to the
DroidAPIMiner [3] and Drebin [6] systems. Both systems leverage
the total set of API calls and permissions of the applications to
compose their feature vectors, and use machine learning to classify
applications.

While we were unable to obtain the actual source code for ei-
ther system, we were able to reproduce DroidAPIMiner's approach.
Using the same static analysis framework that LooPMC is built on,
we extract those features that appear more frequently in malicious
apps by a 6% margin (as in [3]). We then classify the applications
using RapidMiner's k-nearest Neighbor implementation (k=1), un-
der 10-fold cross-validation. This allows us to compare our system
to DroidAPlMiner under obfuscation scenarios.

5.1 Datasets

We evaluated LooPMC with two different publicly-available ma-
licious app datasets. The first, the Malware Genome Project
dataset [47], contains 1,260 apps (178,795 loops) from various mal-
ware families. While this dataset is small, and the repetition of
samples from different families does not provide a lot of variation
in the included apps, this is the best available benchmark to com-
pare against related work. To get a better understanding of how
the system functioned in more realistic circumstances, we obtained
11,080 malicious apps from the VirusShare project [1]. From these,

ACSAC '18, December 3-7, 2018, San Juan, PR, USA

100

so

6°

20

- - Benign — Malicious

Maximum # of Loops
0

Figure 5: CDF of loops present in malicious and benign datasets

we used 6,016 apps (653,855 loops) in our experiments, as Andro-
guard failed to disassemble the rest [19]. These apps are of unknown
distribution but likely vary widely in source and malware family.
As we will show in the following sections, our results support our
assumptions regarding the variety in the dataset. For benign data,
we obtained 20,000 presumed-benign applications crawled from
the Google Play store using the PlayDrone tool [42], from which
we ignored 931 apps as they were very simple example apps with
less than 5 loops. We are able to successfully analyze 17,414 apps
(8,965,146 loops) and 1,655 timed out (took more than 20 minutes
to compute the transitive closure of API invocations) because of
the issues with the version of Androguard [18] we are using.

Initially, we suspected there were inherent differences in the
size or code complexity of the two classes. We anticipated that
malware would be smaller, due to only needing to perform the
intended malicious functionality. One way we can measure this in
our data is to examine the distribution of the loops in both classes.
Figure 5 shows a CDF of the number of loops in the apps from
both classes, using the larger VirusShare dataset. From this, we
can deduce that there is no substantial difference in the number of
loops and classifying this data is not so simple, and it will serve as
an excellent test of our system.

5.2 Iterative Pruning Performance

Here we will demonstrate the performance of the iterative feature
pruning technique used in our system, as introduced in Section 3.3.

Figure 6 shows the performance while analyzing our dataset, in
terms of the change in the number of features during each iteration,
as well as the accuracy of the model after 10-fold cross-validation.
The process converged in few iterations (nine for VirusShare and
six for Genome respectively), had no negative impact on the cross
validation or accuracy scores, and produced a massive decrease in
the number of features (from 124,781 to 440 and from 47,881 to 38
in the VirusShares and Genome datasets respectively).

5.3 Malware Classification Results

Table 4 shows the results for our system, when analyzing un-
obfuscated samples, and compares them with existing malware
detection systems. The results for DroidAPIMiner and Drebin with

A. Machiry et al.

System
Accuracy System

Type
Evaluation against

EvasionMalware
Genome

Virus
Share

LoopMC 99.3% 99.1% Off-device Yes
DroidAPI
Miner

99% 97.4% Off-Device No

Drebin 94% - On-Device No

Table 4: Comparison of LoopMC against DroidAPIMiner [3] and Drebin [6].

the Malware Genome dataset were obtained from their correspond-
ing papers, and the results for VirusShare were determined from
our re-implementation of the DroidAPlMiner system. Drebin was
unavailable to run on the VirusShare dataset. In the above tests, our
system presents the very low False Positive rate of 0.5% and 0.3%
for the Malware Genome and VirusShare datasets, respectively.

5.4 Importance of Loops and Semantic Labels

As one might argue that the effectiveness of our system is mainly
due to a careful and precise choice of semantic labels, in this section
we dissect our system into its two main components, and we show
that they both contributed to its detection effectiveness.

First, we show that, independently of the malware detection
mechanism being used, loops alone encode enough information
to allow it to precisely detect malicious applications, as well as
greatly speeding up the overall detection process. To prove this,
we ran our DroidAPlMiner implementation on the same Malware
Genome dataset described above but considering only the code
that is reachable within the loops of the apps. This resulted in a
classification accuracy of 96.15%, only a slight decrease from when
the entire program is considered. This result clearly shows that
independent of the detection technique, API behavior captured by
the loops can be used to detect malware. Furthermore, since loops
are indeed a small portion of the app's code, this represents a sig-
nificant optimization, without a significant sacrifice in accuracy. In
fact, we explored a version of our analysis that focuses on methods,
instead of the loops as the basis for features. While the accuracy
was similar (within 1%), the analysis time per app increased by at
least lOx, as there are many more methods to analyze than there
are loops. For instance, in the Malware Genome dataset, there are
1,723,413 methods, compared to the 178,795 loops that our system
extracted.
The semantic labels used to create LooPMC's features are, in

part, derived from manual inspection of APIs. To understand the
impact this has on our approach, as well as that of previous work,
we evaluated this aspect independently. We performed the same
DroidAPIMiner experiment outlined above on the Malware Genome
dataset but substituted the API calls themselves for their semantic
label. This resulted in 52.37% accuracy. This shows that manually
created semantic labels alone are not effective and LooPMC gains
its advantage from its ensemble of techniques and not just from the
semantic labels.

5.5 Resilience to Feature-unaware

Perturbations

In this section, we experimentally evaluate the resilience of our
system to evasion attempts, compared to previous work, including

Using Loops For Malware Classification Resilient to Feature-unaware Perturbations ACSAC '18, December 3-7, 2018, San Juan, PR, USA

50000

40000

30000

20000

10000

of features
 100
% Accuracy (10-fold CV)

_______________________ - - - -

- se

- sa g

- 97

96

-95

2
3IterationNumber

(a) Genome dataset

6

140000

120000

100000

ET, 80000

60000

40000

20000

0

— # of features % Accuracy (10-fold CV)
100

-------------------------------- 96

- 98 5

- 97 —

2

96

-95

3 4 5 6
Iteration Number

(b) VirusShare dataset

Figure 6: Effects of iterative pruning on the number of features and model validation under cross-validation.

Dataset True Positive False Positive
Malware Genome 99.99% 2.01%

VirusShare 99.79% 5.45%

Table 5: Performance on CFG-obfuscated malware with Conservative Map
ping

System Configuration Precision
Max Increase of feature Value

10 99.10%

LoopMC
15 97.03%

20 96.25%

25 95.60%

DroidAPlMiner Random bits set 92.51%

Table 6 Additive obfuscation performance of DroidAPlMiner and LoopMC

permutations of the CFG and hiding malicious behaviors via reflec-
tion. We have discussed other forms of program transformations
in Section 4.

CFG Obfuscation. We evaluated our system with ADAM, a frame-
work designed to test malware detection approaches [45]. ADAM
contains different modes, including injection of static code, name
obfuscation, string encryption, and CFG manipulation. Here we
will focus on CFG Obfuscation, which involves the injection of
spurious back-edges in the CFG; the other modules do not affect
our system, as outlined in the previous section.

Table 5 shows the results when running LooPMC on samples
from the Malware Genome and VirusShare datasets, obfuscated
by ADAM. Even in the worst case, when employing the Conserva-
tive Mapping, false positive increase by only 1.51 and 5.15 percent
respectively.

Reflection. Here we will evaluate the effects of an attacker replac-
ing the desired malicious behavior with the equivalent method calls
using reflection. First, we explore the scenario in which every API
call in the app has been converted to a reflection-based call. We
simulated this scenario by replacing all API calls with the reflec-
tion methods and generating the corresponding feature vectors.
DroidAPlMiner classified all these malware samples as benign. In
contrast, LooPMC with Conservative Mapping classified all malware
correctly. We note that both approaches lose visibility in what the
actual behavior of a given app is (i.e., all method calls appear to be

994

reflective calls), but the conservative nature of our approach can
minimize false negatives. However, when reflection is applied to all
the methods in benign apps, LooPMC classified them as malware
too demonstrating that Conservative Mapping could be aggressive
and results in false positives in extreme cases.

Second, an attacker could only use reflection to invoke certain
functions of interest. We simulated obfuscation of a11 the malware
samples in the Malware Genome and VirusShare datasets, by re-
placing all the SMS related API calls with reflection invocations.
On the VirusShare Dataset, Accuracy of DroidAPlMiner dropped to
83.54% (with a 13.86% decrease), while LooPMC's accuracy is rela-
tively high at 92.47% (with only 4.63% decrease). However, on the
Malware Genome Dataset, the accuracy of both systems remained
unaffected. After careful inspection of the malware samples, we
noticed that these samples were glaringly malicious with several
samples doing multiple malicious activities [47]. This explains why
obfuscating SMS related API calls alone has no effect on their clas-
sification, whereas the VirusShare dataset represents a larger, more
modern, and complete dataset.

Blind Perturbations. As we explain in Section 4, p represents the
attacker effort required to change the feature vector with proba-
bility Pa, given that the attacker has no access to the internals of
the model used for classification, or the dataset used to train it. In
API-based detection systems, such as DroidAPlMiner and Drebin,
n is the total number of API methods, f is the API methods which
are frequently seen in malware, and used as features. For the Mal-
ware Genome Dataset, fgpenom e = 735, whereas //DAM 65,000.

Consider pgDeAmnome to be the number of API methods that need to
be added to affect DroidAPlMiner feature vector with probability

Preasonable•
In LooPMC, as mentioned in Section 3, we have 202 possi-

ble labels, and a semantic tag is a subset of these labels. Hence,
the total number of possible semantic tags, n, which is equal

,to the power set of all labels, is equal to nLooPMC = 2202 and

the number of features used after iterative pruning is equal to
eLoopMC gL oe no PoMmCe
Jgenome = 38. Consider to be the number of semantic

ACSAC '18, December 3-7, 2018, San Juan, PR, USA A. Machiry et al.

tags (i.e., loops) that needs to be added to affect the LooPMC feature
vector with probability Preasonable• We have nLOOPMC » nDAM

cLoopMC cDAMand igenome igenome• From observations 1, 2, 3 and 4, since Pa

is fixed, we have plfe;irommce >> dello m e •
Moreover, as we use a decision tree-based classifier, even if impor-

tant semantic tags are known, it is not trivial to affect classification.
An attacker must add features that allow a sample to escape all
the decision nodes in the model by affecting the corresponding
features. In contrast, it is comparatively easy to affect the classifi-
cation of DroidAPIMiner, or any other system that samples these
features from the entire app. The attacker can know important
framework methods (f) from the most used framework methods
in malware and can affect the classification of malware by adding
those framework methods.
We also show, using a simulation that even if a change is per-

formed, it has little to no chance of affecting classification. More pre-
cisely, we simulate the effect of adding code, by altering the feature
vectors from the Malware Genome dataset used by both LooPMC
and DroidAPlMiner. For DroidAPIMiner, this means changing ran-
dom bits in the feature vector from 0 to 1. For LoopMC, we randomly
increase some features in the vector. We use LooPMC's default clas-
sification approach for this evaluation.

Table 6 shows the results of our simulation. Even though ran-
dom features (representing random code) were added to LooPMC's
feature vectors, this did not affect its precision. In contrast,
DroidAPIMiner's precision dropped from 99% to 92.51%. We can
conclude from these experiments that, not only it is extremely diffi-
cult to influence our feature vectors, but also the result of doing so
does not affect our precision as much as the related work.

6 DISCUSSION

Our current prototype does not support the analysis of loops that
are implemented through recursion. There is no fundamental limi-
tation that prevents the proper modelling of these aspects into our
framework, and we plan to extend our framework as part of our
future work.

There are other well-known transformation techniques that af-
fect the loops and could potentially influence the detection from
our system:

• Loop unrolling: This is a transformation technique where,
if the number of iterations of a loop is known, then the body
of the loop is repeated the corresponding number of times
thus eliminating the loop. However, as shown by a recent
large-scale study [23], android applications contain very
few loops whose number of iterations can be determined
statically.

• Inserting junk or infeasible loops: As we do not evaluate
the feasibility of a loop execution, inserting junk loops (e.g.,
unsatisfiable guard conditions, or unreachable loops) could
affect the feature vector and hence our detection. ADAM
inserts infeasible loops into any given Android app but, as we
show in Section 5.5, our system was able to detect malware
even when they were obfuscated by ADAM.

• Merging and Splitting the loops: Merging and splitting
the loops could change the semantic tag of the original loop

and potentially could result in unknown semantic tags. How-
ever, as we show in Section 3.3, we handle this by using
our conservative mapping approach. Furthermore, loop split-
ting [31] is a known hard problem that requires precise reso-
lution of data-dependencies and pointer aliases, which makes
this particular attack vector hard to use even for experienced
attackers.

We acknowledge that existing works like DroidAPlMiner and
Drebin might be improved to be resilient to perturbations. However,
they still could be easily affected as they depend on the entire code-
base of the app unlike LooPMC which leverages only loops.

7 LIMITATIONS

We believe our work represents a significant step forward in the
detection of mobile malware. However, we acknowledge that our
approach is affected by the following limitations.

• Static analysis evasion: Our system cannot handle those
apps using techniques such as bytecode encryption, packing,
malicious native code, dynamic code loading, or VM-based
obfuscation that actively try to evade static analysis. We
note that these techniques also affect all the other works
that depend on static analysis. Moreover, in certain contexts,
such techniques may appear suspicious enough to lead to a
malicious classification.

• Interactions with Android framework: Android is an
event-driven system that allows apps to register for call-
backs on the occurrence of certain events. In the current
implementation, we do not model the call-back functions,
which may result in missing edges in the call-graph. How-
ever, Cao et al. [15] proposed a technique which could be
used to handle the framework interactions and achieve a
complete call-graph.

• No Loops Malware: As LoopMC depends on the presence
of loops, a simple malware that has no loops can easily evade
our system. However, we can have a filtering phase where
apps without loops could be filtered and alerted for alterna-
tive detection techniques.

• Dependent tools: Our analysis system is implemented by
leveraging Androguard, consequently LooPMC inherits the
issues and limitations of Androguard as demonstrated by
the apps which timed out during our analysis.

8 RELATED WORK

This section compares our work against recent advances in mal-
ware detection and Android program analysis. The most similar
works are those that focus on machine-learning-based approaches
to detecting malicious Android programs. Aafer et al. propose
DroidAPlMiner [3], which uses the set of Android API that a given
application can invoke to build a features vector. The authors then
explore several machine learning algorithms, and they empirically
established that the k-nearest Neighbors technique outperforms the
other ones. Arp et al. propose Drebin [6], another malware classifi-
cation system, which uses an SVM-based technique that takes into
account the app's required permissions when building the feature
vectors. A different system is AppContext [44], which uses machine
learning techniques to identify malware by using the "contexe of

Using Loops For Malware Classification Resilient to Feature-unaware Perturbations ACSAC '18, December 3-7, 2018, San Juan, PR, USA

each behavior as a feature. Finally, Garcia et al. recently published
a technical report that describes RevealDroid, a malware detection
and classification system that combines flow-related information
provided by FlowDroid [8] to information related to sensitive API
call invocation, security-relevant data flows, and Intent-related
actions.

In contrast, our approach only needs to analyze the subset of
a program contained in its loops. Therefore, LooPMC only needs
to analyze a reduced (yet meaningful) code base, and, by doing
this, the approach can scale better and is more robust to evasion,
since the mere insertion of API calls is not sufficient to modify the
classification outcome.

Recently researchers developed MAMADROID [34], which uses
java package names instead of API function calls to build behav-
ioral models. However, as we show in Section 3, this is not always
correct, as methods of different packages could have the same
semantics. LooPMC uses a semantic labeling scheme that is a one-
time effort to provide a precise and scalable labeling technique.
Other approaches leverage static analyses to locate malicious be-
havior without executing the app. Kirin [22] uses a rule-based
scheme to detect dangerous configurations of permissions. Flow-
Droid [8] and DroidSafe [25] propose static taint analyses to detect
potentially malicious data flows. Additionally, RiskRanker [26] and
DroidRanger [48] rely on symbolic execution and heuristics to iden-
tify and rank malicious behavior. Although these works share our
same goal, LooPMC is based on a very different technique, and it
achieves a higher classification precision.

In contrast with all of the above approaches, there has been
extensive research on finding malware through dynamic analy-
sis [21, 30, 32, 39-41]. These works are complementary to ours and
all share the inherent limitations of the dynamic analysis, namely,
that they are limited by their ability to stimulate the app such that
the malicious behavior is exposed.

9 CONCLUSIONS

This paper explores a new approach for classifying Android mal-
ware that is resilient against feature-unaware perturbations. Our
approach works by focusing on the loops of a program and by
mapping each app to a very large feature space that makes it chal-
lenging for an attacker to easily change the classification outcome.
We assembled these ideas into a proof-of-concept system, LooPMC,
and we evaluated it with 20,000 malicious and benign Android ap-
plications. LooPMC classifies them correctly with 99.3% and 99.1%
accuracy on two different datasets. We then showed, through simu-
lations and experiments, that LooPMC is more resilient to various
types of evasion techniques, including modifying the CFG, using
reflection, and performing targeted feature manipulation.

ACKNOWLEDGMENTS

We would like to thank our shepherd Juan Tapiador and other
anonymous reviewers for their valuable comments and input
to improve our paper. This material is based on research spon-
sored by DARPA under agreement numbers FA8750-15-2-0084 and
HR001118C0060, by the Office of Naval Research under N00014-17-
1-2897, and by the National Science Foundation under CNS-1408632.
This research is also supported by a Google Security, Privacy, and

Anti-Abuse Award. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.
The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell Interna-
tional Inc., for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-NA0003525.

REFERENCES
[1] VirusShare.com - Because Sharing is Caring, 2015.
[2] LastLine Blog: When Malware is Packing Heat, 2017.
[3] AAFER, Y., Du, W., AND YIN, H. Droidapiminer: Mining api-level features for

robust malware detection in android. In Proceedings of the Security and Privacy
in Communication Networks (SecureComm) (2013).

[4] APPEL, R., FUCHS, T, DOLLAR, P., AND PERONA, P. Quickly boosting decision
trees-pruning underachieving features early. In Proceedings of the JMLR Workshop
and Conference (JMLR) (2013).

[5] ARCHER, K. J., AND KIMES, R. V. Empirical characterization of random forest
variable importance measures. Computational Statistics and Data Analysis 52, 4
(2008), 2249 - 2260.

[6] ARP, D., SPREITZENBARTH, M., HORNER, M., GASCON, H., RIECK, K., AND SIEMENS,
C. Drebin: Effective and explainable detection of android malware in your pocket.
In Proceedings of the Network and Distributed System Security Symposium (NDSS)
(2014).

[7] ARZT, S., RASTHOFER, S., AND BODDEN, E. Susi: A tool for the fully automated
classification and categorization of android sources and sinks. University of
Darmstadt, Tech. Rep. TUDCS-2013-0114 (2013).

[8] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL, A., KLEIN, J., LE TRAON, Y.,
OCTEAU, D., AND MCDANIEL, P. FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps. In Proceedings
of the Conference on Programming Language Design and Implementation (PLDI)
(2014).

[9] Au, K. W. Y., Zimu, Y. F., HUANG, Z., AND LIE, D. Pscout: analyzing the android
permission specification. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2012).

[10] BREIMAN, L. Random forests. Machine learning 45, 1 (2001), 5-32.
[11] BREIMAN, L. Manual on setting up, using, and understanding random forests v3.

1. Statistics Department University of California Berkeley, CA, USA (2002).
[12] BREIMAN, L., FRIEDMAN, J., STONE, C. J., AND OLSHEN, R. A. Classification and

regression trees. CRC press, 1984.
[13] BROOKS, R. Towards a theory of the comprehension of computer programs.

International journal of man-machine studies 18, 6 (1983), 543-554.
[14] BUZATU, F. Methods for obfuscating java programs. Journal of Mobile, Embedded

and Distributed Systems 4, 1 (2012), 25-30.
[15] CAO, Y., FRATANTONIO, Y., BIANCHI, A., EGELE, M., KRUEGEL, C., VIGNA, G., AND

CHEN, Y. EdgeMiner: Automatically Detecting Implicit Control Flow Transitions
through the Android Framework. In Proceedings of the Network and Distributed
System Security Symposium (NDSS) (2015).

[16] CHAN, J.-T., AND YANG, W. Advanced obfuscation techniques for java bytecode.
Journal of Systems and Software 71, 1 (2004), 1-10.

[17] DESNOS, A. Androguard: Reverse engineering, malware and goodware analysis of
Android applications... and more (ninja!). https://code.google.com/p/androguard/.

[18] DESNOS, A. Androguard: Reverse engineering, malware and goodware analysis
of Android applications... and more (ninja!). https://github.com/androguard/an
droguard/issues.

[19] DESNOS, A. Bugs in AndroGuard to disassemble APKs. https://github.com/andro
guard/androguard/issues.

[20] DUAN, Y., ZHANG, M., BHASKAR, A. V., YIN, H., PAN, X., LI, T., WANG, X., AND
WANG, X. Things you may not know about android (un) packers: a systematic
study based on whole-system emulation. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2018).

[21] ENCK, W, GILBERT, P., CHUN, B., Cox, L., JUNG, J., MCDANIEL, P., AND SHETH, A.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the USENIX Conference on Operating Systems
Design and Implementation (OSDI) (2010).

[22] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On Lightweight Mobile Phone
Application Certification. In Proceedings of the ACM Conference on Computer and

ACSAC '18, December 3-7, 2018, San Juan, PR, USA A. Machiry et al.

Communications Security (CCS) (2009).
[23] FRATANTONIO, Y., MACHIRY, A., BIANCHI, A., KRUEGEL, C., AND VIGNA, G. Clapp:

characterizing loops in android applications. In Proceedings of the ACM Sympo-
sium on the Foundations of Software Engineering (FSE) (2015).

[24] GASTWIRTH, J. L. The estimation of the lorenz curve and gini index. The Review
of Economics and Statistics (1972), 306-316.

[25] GORDON, M., KIM, D., PERKINS, J., GILHAM, L., NGUYEN, N., AND RINARD, M.
Information-Flow Analysis of Android Applications in DroidSafe. In Proceedings
of the Network and Distributed System Security Symposium (NDSS) (2015).

[26] GRACE, M., ZHOU, Y., ZHANG, Q., Zou, S., AND JIANG, X. Riskranker: Scalable
and Accurate Zero-Day Android Malware Detection. In Proceedings of the In-
ternational Conference on Mobile Systems, Applications, and Services (MobiSys)
(2012).

[27] Hou, T.-W., CHEN, H.-Y., AND TSAI, M.-H. Three control flow obfuscation methods
for java software. IEE Proceedings-Software 153, 2 (2006), 80.

[28] KEOGH, E., AND MUEEN, A. Curse of Dimensionality. Springer US, Boston, MA,
2010, pp. 257-258.

[29] KOHAVI, R., ET AL. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In Proceedings of the International Joint Conference on
Artificial Intelligence (13CAI) (1995).

[30] LINDORFER, M., NEUGSCHWANDTNER, M., WEICHSELBAUM, L., FRATANTONIO, Y.,
VAN DER VEEN, V., AND PLATZER, C. ANDRUBIS-1,000,000 Apps Later: A View
on Current Android Malware Behaviors. In Proceedings of the International
Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS) (2014).

[31] Liu, J., WICKERSON, J., AND CONSTANTINIDES, G. A. Loop splitting for efficient
pipelining in high-level synthesis. In Proceedings of the IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM) (2016).

[32] LOCKHEIMER, H. Android and Security. http://googlemobile.blogspot.com/2012/
02/android-and- security.html, February 2012.

[33] LOUPPE, G., WEHENKEL, L., SUTERA, A., AND GEURTS, P. Understanding variable
importances in forests of randomized trees. In Proceedings of the International
Conference on Neural Information Processing Systems (NIPS) (2013).

[34] MARICONTI, E., ONWUZURIKE, L., ANDRIOTIS, P., DE CRISTOFARO, E., Ross, G.,
AND STRINGHINI, G. Mamadroid: Detecting android malware by building markov
chains of behavioral models. arXiv preprint arXiv:1612.04433 (2016).

[35] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of static analysis for malware
detection. In Proceedings of the ACM Computer Security Applications Conference
(ACSAC) (2007).

[36] POMILIA, M. A study on obfuscation techniques for android malware, 2016.
[37] QI, Y. Random Forest for Bioinformatics. Springer US, Boston, MA, 2012, pp. 307-

323.
[38] RASTOGI, V., CHEN, Y., AND JIANG, X. Droidchameleon: evaluating android anti-

malware against transformation attacks. In Proceedings of the ASIA ACM Sympo-
sium on Computer and Communications Security (ASIACCS) (2013).

[39] REINA, A., FATTORI, A., AND CAVALLARO, L. A system call-centric analysis and
stimulation technique to automatically reconstruct android malware behaviors.
EuroSec, April (2013).

[40] SPREITZENBARTH, M., FREILING, F., ECHTLER, F., SCHRECK, T., AND HOFFMANN, J.
Mobile-sandbox: having a deeper look into android applications. In Proceedings
of the ACM Symposium on Applied Computing (SAC) (2013).

[41] TAM, K., KHAN, S., FATTORI, A., AND CAVALLARO, L. CopperDroid: Automatic
Reconstruction of Android Malware Behaviors. In Proceedings of the Network
and Distributed System Security Symposium (1s1DSS) (2015).

[42] VIENNOT, N., GARCIA, E., AND NIEH, J. A Measurement Study of Google Play.
In Proceedings of the International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS) (2014).

[43] WEI, T., MAo, J., Zou, W., AND CHEN, Y. A new algorithm for identifying loops
in decompilation. In Proceedings of the International Conference on Static Analysis
(SAS) (2007).

[44] YANG, W., XIAO, X., ANDOW, B., LI, S., XIE, T., AND ENCK, W. AppContext:
Differentiating Malicious and Benign Mobile App Behaviors Using Context. In
Proceedings of the International International Conference on Software Engineering
(ICSE) (2015).

[45] ZHENG, M., LEE, P. P., AND LUI, J. C. Adam: an automatic and extensible platform
to stress test android anti-virus systems. In Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA) (2013).

[46] ZHENG, M., SUN, M., AND LUI, J. C. Droidanalytics: A signature based analytic
system to collect, extract, analyze and associate android malware. In Proceedings
of the International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom) (2013).

[47] Znou, Y., AND JIANG, X. Dissecting Android malware: Characterization and
evolution. In Proceedings of the IEEE Symposium on Security and Privacy (SP)
(2012).

[48] ZHOU, Y., WANG, Z., ZHOU, W, AND JIANG, X. Hey, you, get off of my market: De-
tecting malicious apps in official and alternative android markets. In Proceedings
of the Network and Distributed System Security Symposium (NDSS) (2012).

