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Magnetized Liner Inertial Fusion is a promising (@&
concept being explored on Z
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A suite of stagnation diagnostics are used to
characterize performance

measurement
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We have developed a forward model that allows direct,
quantitative comparison of the data with synthetic diagnostics

]vslices

Assumptions:

Each slice has its own independent parameters characterizing a
1D cylindrical, isobaric hot spot surrounded by a liner

Ideal gas EOS: Pys = (1 + (Z))n;ikgT

All elements have same burn duration

Electron and ion temperatures are equal

Mix fraction is radially uniform

X-ray emission is dominated by continuum (BF & FF)

*Ballabio et al., NUCLEAR FUSION, Vol. 38, No. 11 (1998)
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The analysis is done use Bayesian Parameter estimation to )
determine the most likely hotspot parameters

tokamak plasma profile estimation at
installations such as JET and MAST

Bayesian Inversion Wrapper

Input Parameters

2 %08 1 52
VW) R (m) v (W)

% 05 - ((‘n ) 15
Svensson et al., Plasma Phys. Control. Fusion 50 085002 (2008)
‘Von Nessi et al., J. Phys. A46 185501 (2013)

LIGO binary black hole merger analysis

Experimental Observables

Hanford, Washington (H1) Livingston, Louisiana (L1)

:-%@Nj\/mmw WWMW * Bayesian parameter estimation is a well-established technique used in a
A A variety of fields

* Analysis can be used to infer most likely parameters, correlations

i between model parameters and/or data

294M,,
624M,

P * Can compute value of information to determine which data constrain
which parameters and how well

See Poster BP11.00016, by Matt Evans for
details on validation of the inversion technique

Veitch et al., Phys. Rev. D 91 042003 (2015)




Analysis from z2839, the canonical MagLIF experiment @) =

\,
-
-
&
<

o
o
o
o
o

Y55 = 3.2 x 1012 + 20%

& s : s : VPt = 3.1 x 10" +10%
E DD )
S4 4 4 4 4
@
&
T 3 3 3 3 3 35 Post PCD
2 = Model
2 2 2 2 2 20 Bl Measurement
1 1 1 1 1 D
>
0 0 0 0 0 220
0 2 4 6 8 10 0.000.250.500.751.001.251.50 00 03 06 09 12 15 18 1 3 5 7 0 20 40 60 80 100 120 s
temperature pressure rho_r i radius js‘ 15
=
045 £
040 Post 10
»035
E 0.30
= 5
gDIS
E 0.20
s 0
g o 25.4 um 508.0 um 254.0 um
~ o0 Kapton Kapton Kapton
lll | {l
005 | III L 2 il b
i

height (mm)

Eps = 10.8+ 1.1 kJ
(P) = 0.63 £ 0.17 Gbar

Image Intensity (PSL)

radius (mm) radius (mm)




An ensemble of experiments have been performed to isolate () i
sources of degradation and improve performance

Unconditioned
Beam

z2985: Al Cushions exacerbate
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and couple more energy to gas
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z3143: 20 ns delay between
20J pre-pulse and 2kJ main
pulse to reduce window mix




An ensemble of experiments have been performed to isolate () i
sources of degradation and improve performance

z2985: Al Cushions exacerbate
impact of laser-induced mix

z3019: AR9 coated target to
improve stagnation uniformity

z3040: Use DPP to condition beam
and couple more energy to gas

z3143: 20 ns delay between
20J pre-pulse and 2kJ main
pulse to reduce window mix

lon Temperature [keV]




An ensemble of experiments have been performed to isolate (i) i
sources of degradation and improve performance

z2985: Al Cushions exacerbate
impact of laser-induced mix

sy

z3019: AR9 coated target to
improve stagnation uniformity
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Plastic coating
» has higher
opacity than Be
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The fuel energy scales (mostly) inversely
with the mix fraction

10
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Hotspot Energy [kJ]

Mix fraction is CH equivalent

() =

In general, more mix means lower
yield and less fuel energy at
stagnation

Experiment with DPP introduced
significantly more mix, but
performed better

Co-injection shot w/ 90 PSI gas has
more energy, less mix, but produced
fewer neutrons

Suggests sensitivity to ~ow energy is
deposited and mix is distributed




The ETI coating contributed to an elevated () 5.,
pressure over a fairly large portion of the column
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= Also exhibits more uniform temperature, radius, 5 34
and liner areal density than other experiments 2

= All points to improved stability at stagnation
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Mix fraction is CH equivalent




Axial pressure and temperature profiles reveal  ([@)i=.
significant structure and presence of hotspots
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= Large variations in temperature and pressure
= No evidence of end effects in pressure profiles without coating




We can constrain the relative window and () B,
cushion mix fractions by comparing experiments
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In our approximation, the losses 8 2% CH + 0.33% Al
due to mix scale as "
~ fZ 5/2 85
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2% CH + 1% Be

Assume the same mass of Al and
Be are scraped off during preheat
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Hotspot Energy [kJ]

feffZSf{fz — fBe AlZBé Al + fCHZ5/2

The Al-mixed hotspot radiates less energy than the Be-mixed
hotspot, due to lower pressure
Radiation at stagnation cannot account for the energy deficit




Conclusions ) e,

= A multi-objective, Bayesian parameter estimation technique was used to
infer stagnation conditions in a range of MagLIF experiments

= Stagnation pressure, mix fraction, temperature and hotspot energy were
seen to change with changes in experimental configuration

= Mix fraction ranges from 1-7% for different configurations and has a large
impact on target performance

= An experiment with a dielectric coating shows much better axial uniformity
n temperature, pressure, and liner areal density than the uncoated
experiments
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73019 Ypp = 3.0 x 1012 D=
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