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Focus on ES Partnerships and Collaborations with Industry & Academia

"David Reed - Pacific Northwest National Laboratory
= Optimization and Controls for ES Safety

“Robb Thomson - National Institute of Standards and Technology
= On the Role of Energy Storage in the Operation of Future Fossil Free Utilities

"Brian Berland - ITN Energy Systems
* Demonstration of a kW Class Redox Battery Using an Advanced Bi-additive Vanadium Sulfate Electrolyte

"Mitch Anstey - Davidson College (North Carolina)
= Improving Stability of Battery Additives and Electrolytes Using Redox Non-Innocent Ligand Complexes
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University Projects (Through Sandia)

Davidson College  Ohio State University
University of Washington — University Texas Atlington
CUNY New Mexico Tech
Northeastern University  University New Mexico
Stony Brook University ~ Washington University at S. L.
University of Kentucky — Michigan State University
UC Irvine  University of Utah
University of Alaska Fairbanks  South Dakota State University
University Texas at Austin ~ Clemson University

New Mexico State University  Southern Methodist University

$2.2M in funding to universities




4 | Industry/Utility Partners (Through Sandia)
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5 I Collaboration Highlight: The University of Texas at Austin

Low Voltage and High Current Bidirectional Converter Alex Huang (UT Austin)
for Grid-tied Flow Battery Energy Storage System Stan Atcitty (Sandia)

"Task 1: Design, analysis and preliminary hardware development of a 45V/10kW level compact
and efficient wide-band-gap-based converter.

»Task 2: Efficiency and thermal performance assessment and model validation along with
converter design improvements.

»Task 2: Evaluation of parallel operation will ensure proper current sharing to achieve higher
power. Plug-and-play installation and control configuration assessment.

Past Power Electronics Recognition at Sandia
» Four R&D100 Awards

* Three U.S. Patents, three pending
» Over 40 technical publications

» Power Electronics for Renewable &
Distributed Energy Systems book

APEI vt
15kV Discrete SiC Multichip Module
The University of Texas at Austin

&7 Cockrell School of Engineering
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Optimal control of battery energy storage: Reducing and David Rosewater (Sandia)
Shaping Model Uncertainty to Improve Control Performance Surya Santoso (UT Austin)
Ross Baldick (UT Austin)

Battery States InverterStates Grid States

Model
Uncertainty
Y, Model uncertainty stems
from unrepresented
Operational model dynamics,
Measurement : _ E Uncertainty inaccurate parameters,
Uncertainty = « Load Forecast abnolrr.nal operational
~ * Solar Forecast conditions, or state
v > | controller | < ) disturb iniecti
B S + Wind Forecast isturbance injections.
A * Price Forecast
* Events |
Grid Operators Renewable Generation |

The University of Texas at Austin
&) Cockrell School of Engineering
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Problem Statement

Consider a hypothetical commercial electrical
customer billed for power under both time-of-use

(TOU) and a $50/kW demand charge.

Electric Bill without BESS
c'l + $50 max(1)

Electric Bill with BESS

c' (1 + pe) + $50 max(l + p.)

where p. is the battery system power that element wise
subtracts from [ when the battery system is discharging.
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algorithm to optimally calculate a vector of battery
system powe/p. that minimizes the customer’s
cost without exceeding the battery’s limits.

28] The University of Texas at Austin
&J Cockrell School of Engineering

The problem is thus formulated: design a control I



Energy Reservoir Model

min cT(l + pe) + $507 + 11| |pe| |§
w(‘eRn

subject to:
QcapDs = min(pe, 0) + 7. max(pe, 0) + Psd
(1) —¢=0
(1) —s(n)=0
Pmin < Pe < Pmaa
Smin < S < Smax
miS + b1 < pe < mag + b

l+p.<T

Name Symbol  Mean o

Energy Capacity* Qcap 5944 kWh  0.096 kWh
Energy Efficiency* e 61.7 % 2.63%
Maximum Power Discharge  pmax 7 kW

Maximum Power Charge Pmin 7 kW

Maximum SoC Smax 95 %

Minimum SoC Smin 20 %

= derved from expenimental analysis using a least-square ht

Collaboration Highlight: The University of Texas at Austin

Charge Reservoir Model

min c' (1 + pe) + $507 + I1||pe| |2
. ER™

subject to: The CRM i1s includes

Pde — .@opg —@1Pe— P2 =0
Pde — thatVbat = 0

more dynamics so it

R has the potential for
3 4 2 S .
Voo — s — B2 — 46— 6 =0
oo — 6™ — i — 1§ higher accuracy.
CeapDs — ne max(ipat, 0) — min(ipqt, 0) =0
(1) - =0
¢(1) —=¢(n) =0
Pmin < Pe < Pmaz Name Symbol  Mean -
) ) Charge Capacity® Cap 1.2 AR T Ah
Smin < € < Smaz Coulombic Efficiency* Ne 94.6 % 0.74%
< < Inverter Efficiency Coefficient® ¢y -4.7865¢e-07
Umin = Ubat = Umazx Inverter Efficiency Coefficient* ¢4 0.99107
e . e ry Inverter Efficiency Coefficient®  ¢2 -0.0721
lmin S that = tmax Battery Internal Resistance* Rg 15.35 mQ2 0.34 mS2
Maximum Power Discharge Prmax 7 kW
l + Pe S . Maximum Power Charge Pmin 7 kW
Maximum SoC Qmax 95 %
Minimum SoC Semin 20 %
. 1 Maximum Battery Voltage Uman 588V
() Minimum Battery Voltage Urnan 462V
ptlma parameters arc Maximum Current Discharge Prmax 150 A
. Maximum Current Charge Pmin 150 A
derived for both models Cobk Pl T 75—
02<¢ <095 13.48 -10.04 5.74 49.23

from expirementation.

* derived from experimental analysis using a least-square fit




Open-loop Control: lllustration of Asymmetric Risk

Suboptimal performance

Available Energy 5.5 L : : : :
peak ach = 4.276kW
B
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10 I Performance Improvement From the CRM
The baseline customer electrical bill for this time is $311.01 I

For the example system parameterized with experimental data, we find that 1. the closed-loop ERM reduces this by
12.0% to $273.81, and 2. the closed-loop CRM reduces the bill by 13.2% to $269.94

While a $4 per month imErovement in savings over the ERM does not sound significant in absolute terms, it is
important to remember the scale of power systems. With approximately 5 million commercial customers in the U.S.
currently eligible for tariffs with a demand charge rate of at Ieast $15/kW MeLaren 20173 12 8\ % improvement in cost
savings, over the ERM, from a simple change in software would have a significant impact.
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J. McLaren and S. Mullendore, “Identifying potential markets for
behind-the-meter battery energy storage: A survey of U.S. demand

23 | The University of Texas at Austin
charges,” National Renewable Energy Laboratory, Tech. Rep., 2017.

Cockrell School of Engineering
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11 | Collaboration Highlight: The University of Texas at Austin

| . Acknowledgements:
» Inaccurate models can lead to suboptimal

Supervisor:
control p

\ _ , * Dr. Surya Santoso
»Model uncertainty can create either

suboptimal control or an optimistic
shortfall * Dr. Ross Baldick

A . . . L

»Some services have asymmetric risk, where Dr. Glenn Masada
overestimating future states has greater or * Dr. Alex Huang
lower im.pact.on Fhe objective than e Dt Hao Zhu
underestimating it.

Committee Members:

* Dr. Raymond Byrne

This research highlight illustrates one example of broad research
portfolio that is intrinsically integrated with industry and academia

The University of Texas at Austin
&7 Cockrell School of Engineering



