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2 I Focus on ES Partnerships and Collaborations with Industry & Academia

■David Reed - Pacific Northwest National Laboratory

■ Optimization and Controls for ES Safety

■Robb Thomson - National Institute of Standards and Technology

■ On the Role of Energy Storage in the Operation of Future Fossil Free Utilities

■Brian Berland - ITN Energy Systems

■ Demonstration of a kW Class Redox Battery Using an Advanced Bi-additive Vanadium Sulfate Electrolyte

■ylitch Anstey - Davidson College (North Carolina)
■ Improving Stability of Battery Additives and Electrolytes Using Redox Non-Innocent Ligand Complexes



3 University Projects (Through Sandia)

Davidson College

University of Washington

CUNY

Northeastern University

Stony Brook University

University of Kentucky

UC Irvine

University of Alaska Fairbanks

University Texas at Austin

New Mexico State University

Ohio State University

University Texas Arlington

New Mexico Tech

University New Mexico

Washington University at S. L.

Michigan State University

University of Utah

South Dakota State University

Clemson University

Southern Methodist University

$2.2M in funding to universities
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4 I Industry/Utility Partners (Through Sandia)
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5 I Collaboration Highlight:The University of Texas at Austin

Low Voltage and High Current Bidirectional Converter Alex Huang (UT Austin)

for Grid-tied Flow Battery Energy Storage System Stan Atcitty (Sandia)

Task 1: Design, analysis and preliminary hardware development of a 45V/lOkW level compact
and efficient wide-band-gap-based converter.

Task 2: Efficiency and thermal performance assessment and model validation along with
converter design improvements.

-Task 2: Evaluation of parallel operation will ensure proper current sharing to achieve higher
power. Plug-and-play installation and control configuration assessment.

Past Power Electronics Recognition at Sandia
• Four REtD100 Awards

• Three U.S. Patents, three pending

• Over 40 technical publications

• Power Electronics for Renewable Et
Distributed Energy Systems book

APEI
15kV Discrete SiC Multichip Module

The universityof Texas at Austin

Cockrell School of Engineering



6 1 Collaboration Highlight:The University of Texas at Austin

Optimal control of battery energy storage: Reducing and
Shaping Model Uncertainty to Improve Control Performance

Model
Uncertainty

Battery States Inverter States Grid States

Measurement
Uncertainty

1,3

Grid Operators

Alk

1 Controller •14..,, ......

Markets

Operational
Uncertainty
• Load Forecast
• Solar Forecast
• Wind Forecast
• Price Forecast
• Events

Renewable Generation

David Rosewater (Sandia)
Surya Santoso (UT Austin)
Ross Baldick (UT Austin)

Model uncertainty stems
from unrepresented
model dynamics,
inaccurate parameters,
abnormal operational
conditions, or state
disturbance injections.



7 I Collaboration Highlight:The University of Texas at Austin

Problem Statement

Consider a hypothetical commercial electrical
customer billed for power under both time-of-use
(TOU) and a $50/kW demand charge.

Electric Bill without BESS

et/ + 50 max(l)

Electric Bill with BESS

et (l pe\ $50 max(/ p,)

where pc is the battery system power that element wise

subtracts from l when the battery system is discharging.
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The problem is thus formulated: design a control
algorithm to optimally calculate a vector of battery
system powelp, that minimizes the customer's
cost without exceeding the battery's limits.



8 Collaboration Highlight: The University of Texas at Austin

Energy Reservoir Model
min
xe ER-

subject to:

Qcaprk = min(pe, 0) + max(pe, 0) + Psd

g(1) — so = 0

6.(1) — g(n) = 0

Pmin < Pe < Pmax

cmin < < qmax

ct(1 + Pe) + $507- + I 'HA ll::-;

?nig bl < Pe < rn2S b2

+ pe <

Name Symbol Mean
Energy Capacity*
Energy Efficiency*
Maximum Power Discharge
Maximum Power Charge
Maximum SoC
Minimum SoC

Qcap

pion
Pmin

•min

5.944 kWh
61.7 '4
7 kW
7 kW
95 %
20 %

0.096 kWh
2.63%

denved trom expenmental analysis using a least-square lit

Charge Reservoir Model
min
xc E

subject to:

Pdc 0014 — 01Pe

Pdc ibatVbat = 0
Vbat Voc ROjbat = 0
vo, — ac3 — 062 — — = 0
CcapDg — ?lc max(ibat, 0) — min(ibat, 0) = n
c(1) — co = 0

c(1) — g(n) = 0

Pmin < Pe < Pmax

Cmin < S < Cmax

Vmin

Ct + Pe) + $507 +1111Peq

— = 0

< Vbat < Vmax

imin < 2bat < imax

Pe < T

Optimal parameters are

derived for both models
from expirementation.

The CRM is includes
more dynamics so it

has the potential for

higher accuracy.

Name Symbol Mean
Charge Capacity* C. tap 1 35. 2 Ah 2.6 Ah
Coulornbic Efficiency* Tic 94.6 % 0.74%
Inverter Efficiency Coefficient* 00 -4.7865e-07
inverter Efficiency Coefficient* 01 0.99107
Inverter Efficiency Coefficient* 0'2 -0.0721
Battery internal Resistance* RO 15.35 nif2 0.34 inn
Maximum Power Discharge P01111 7 kW
Maximum Powcr Charge Pmm 7 kW
Maximum SoC 95 %
Minimum SoC coin 20 %
Maximum Battery Voltage vmat 5&8 V
Minimum Battery Voltage vmm 46.2 V
Maximum Curient Discharge Paw 150 A
Maximum Current Charge Pnin 150 A

Cubic Polynomial Fe
0.2 < 4, < U.95 13.48 -10.04 5.74 49.23

* derrved from c‘pcnmcnial analysis using a least-square fit



9 I Open-loop Control: Illustration of Asymmetric Risk

Available Energy 5.5

Underestimation -> Suboptimal control
Overestimation -> Optimistic shortfall
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profile, meaning it is much worse to overestimate

available energy than to underestimate it.
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10 1 Performance Improvement From the CRM
The baseline customer electrical bill for this time is $311.01

For the example system parameterized with experimental data, we find that 1. the closed-loop ERM reduces this by
12.0% to $273.81, and 2. the closed-loop CRM reduces the bill by 13.2% to $269.94

While a $4 per month im-Drovement in savings over the ERM does not sound significant in absolute terms, it is
important to remember t_ae scale of power systems. With approximately 5 million commercial customers in the U.S.
currently eligible for tariffs with a demand charge rate of at least $15/kW McLaren_2017 a 12.8\% improvement in cost
savings, over the ERM, from a simple change in software would have a significant impact.
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J. McLaren and S. Mullendore. "Identifying potential markets for
behind-the-meter battery energy storage: A survey of U.S. demand
charges,- National Renewable Energy Laboratory. Tech. Rep.. 2017.

peak ERM = 4.35kW

peak CRM = 4.206kW
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The universityof Texas at Austin

Cockrell School of Engineering



I11 Collaboration Highlight:The University of Texas at Austin

Inaccurate models can lead to suboptimal
control

Model uncertainty can create either
suboptimal control or an optimistic
shortfall

>Some services have asymmetric risk, where
overestimating future states has greater or
lower impact on the objective than
underestimating it.
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This research highlight illustrates one example of broad research
portfolio that is intrinsically integrated with industry and academia

ffill The University of Texas at Austin
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