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Introduction
Interplay of Theory, Simulation, and Experiment in HED Physics
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Magneto-hydrodynamics HED experiments and
simulations support design diagnostics provide data
of HED experiments. to benchmark theory.

Magneto- AMO/Electronic

hydrodynamics structure
simulations theory

Atom/Electronic structure
theory provides data on
microscopic scale (electronic
transport properties) as
input to magneto-
hydrodynamics simulations.




Introduction
Utility of TDDFT for HED physics
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Free-Electron X-Ray Laser Measurements of Collisional-Damped
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Introduction

4| Coupled Electron-lon Many-Body Problem

Time-dependent Schrodinger equation for the many-particle (molecular) Hamiltonian.
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Introduction
Time-dependent DFT and Ehrenfest MD

We reduce the complexity to a one-body problem 8
(somewhat at the cost of accuracy).

Two coupled equations of motion
> TD Kohn-Sham equations

K. Burke, J. Chem. Phys. 136, 150901 (2012).
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The ABC of DFT (dft.uci.edu/doc/g1.pdf).




Introduction
Implementation of TDDFT for HED

Sandia implementation of TDDFT-
Ehrenfest MD in VASP

o Andrew D. Baczewski et al., PRL 116,
115004 (2016)

° Plane wave basis

° Projector-augmented wave (PAW)
formalism

> Crank-Nicolson time integration
(unitary)

o Generalized minimal residual method

Scales well on DOE machines
o Typically 100s of cores, a few hours
> No “free” parameters
> takes mass density
o # of electrons
> exchange-correlation functional
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Stopping Power

o | Importance of Non-Adiabatic Effects

Hydrogen moving through cold, bulk aluminum in a channeling trajectory

Born-Oppenheimer MD Ehrenfest MD

Projectile velocity
PR
_—

Stopping force

No stopping power Matches experimental
(unphysical) stopping power




Stopping Power

Warm Dense Deuterium
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> Stopping at 10 g/cc (mass density) and 2 eV (temperature)
> Force vs. projectile distance: Similar across velocities Ky |




Stopping Power

Warm Dense Deuterium

2000
10keV
30keV
100keV
1500 300keV
> 1MeV
g — 3MeV
g — 10MeV
1000
o — 30MeV ‘
[ =~
£ |
a
=)
0
500
~ " _“'.A‘v“.t'n'\v ]
~ R | W
e A% »_;/'A‘-b;_“_/ N i —
N 15 20
Position [Ang.]

> Stopping at 10 g/cc (mass density) and 2 eV (temperature)
> Force vs. projectile distance: Similar across velocities
> Work vs. projectile distance: Spikes represent ions
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Stopping Power
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> Force vs. projectile distance: Similar across velocities

> Work vs. projectile distance: Spikes represent ions

> Electronic work vs. projectile distance: Slope
represents stopping power
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Stopping Power

Warm Dense Deuterium

Projectile at 300 keV
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X-Ray Thomson Scattering

| The Chihara Decomposition

J. Phys. F: Met. Phys. 17 (1987) 295-304.
Difference in x-ray scattering between metallic and non-metallic

liquids due to conduction electrons

Junzo Chihara
Department of Physics, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-11,
Japan

Starting point for most models of the dynamic structure factor
> Partition electrons into bound and free and model each contribution

S(q,w) = |fr(a) + n(q)]® Sii(q,w) + Zf See(q,w) + Spr(q,w)

In principle, this is fine.
In practice, there can be problems:
> Distinction between bound and free electrons might break down for WDM

° Inconsistent treatment of various terms
> More parameters




X-Ray Thomson Scattering

;3 | Chihara-free Dynamic Structure Factor under HED Conditions

Probe system with x-ray

v(r,t) = vy eV f(1)
_ 4msin(0/2)
Ao : probe wavelength (2A)

Record density response

én(q,t) = /OOZT x(a, —q,7)vo f(t —7)

Apply dissipation-fluctuation theorem

o :(5n(q,w)
x(@, —aw) = - (@)

1S [X(qa —q, w)]

S(q7w) — _; 1 — e—w/ks T




X-Ray Thomson Scattering

. | Chihara-free Dynamic Structure Factor under HED Conditions

Probe system with x-ray

v(r,t) = vy eV f(1)
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|q‘ T )\O
Ao : probe wavelength (2A)

~
o
~

Perturbing Envelope

Record density response
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Apply dissipation-fluctuation theorem
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X-Ray Thomson Scattering

Chihara-free Dynamic Structure Factor under HED Conditions
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Electrical and Optical Conductivity under HED Conditions

6 | Liquid Aluminum at High Temperature

State-of-the art conductivities from static approaches

(average-atom methods or DFT with Kubo-
Greenwood formula)
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Going beyond static approaches with TDDFT
> No abuse of KS quantities
> Better scaling than in the energy domain

° Beyond linear response
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B. B. L. Witte et al., Phys. Rev. Lett. 118, 225001 (2017).
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A. Cangi et al, in prep. (2018).
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Conclusions and Outlook

First-principle TDDFT calculations provide microscopic data and
help constrain experiments and other state-of-the-art models.

Stopping power

o Capability to improve databases of stopping curves for a wide range of warm dense
targets (mixtures of target materials, different types of projectiles, statistical data)

X-ray Thompson scattering / Conductivities

> Capability to help with diagnostics and serve as input to magneto-hydrodynamics
simulations.

Future developments

> Need for a self-consistent model for HED physics

> Need for improvements in computational efficiency and accuracy

> Computationally efficient stopping power with TDDFT on average-atom models

> Thermal conductivity from TDDFT

> More accurate inclusion of non-adiabatic effects from the exact factorization method

> Non-equilibrium many-body perturbation theory







Introduction

- What are HED and WDM conditions?

Coulomb coupling parameter
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Introduction
High energy density (HED) conditions

Creating HED conditions requires transferring an enormous amount of energy
to a target in a very short period of time.

Compression of energy in time and space in pulsed power facilities (Z
machine) enables exciting science (astrophysics, planetary science, inertial
confinement fusion).

Z Machine, Sandia National Laboratories.
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9 Time scales

Time taken for Period of electron orbit
light to cross in hydrogen (150 as)
1 mm (3 ps)
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Courtesy of Kay Dewhurst, Max Planck Institute of Microstructure Physics (2015).




Theoretical Background

» | Density Functional Theory




Theoretical Background

;| Density Functional Theory (at finite temperature)




Application |: Stopping Power

.. | Electronic Stopping in Warm Dense Targets

Stopping mechanisms
> Nuclear stopping (lattice vibrations)
> Electronic stopping (electronic excitations)

Large body of literature for cold targets
> Empirical approximations (Rutherford, Thomson, Bohr, Bethe)
> Parameter-free atomistic simulations
> Electronic structure coupled to molecular dynamics
> Cold stopping power (Echenique, Correa, Artacho, Schleife)

Subjec
Target

Exploding pusher

‘ D*He proton source ,

Source Drive
D*He 20 beams
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2.3um thickness
ve

Subject Dri

Zylstra et al., Phys. Rev. Lett.114,215002 (2015).
Lawrence Livermore National Laboratories.




Application |: Stopping Power
H/Be Stopping Simulation

Stopping power in cold Be

Hydrogen projectile
v = 40.0 keV (27.7 Angstrom/fs)

Time step: 0.13 as
Total simulation fime: 730 as




Application |: Stopping Power

.. | H/Be Stopping Simulation: Electronic Stopping Force




Application |: Stopping Power

| Microscopic Statistics of the Electronic Stopping Force
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Application |: Stopping Power
H/Be Stopping Simulation: Electronic Stopping Work
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Off-channeling
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Application |I: Stopping Power
Cold and Warm Dense Beryllium @

Calculations performed on Solo

/ (5 nodes, 32 cores per node, | day)
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Application |I: Stopping Power
Stopping in Warm Dense Deuterium: A Closer Look
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Electronic Forces on Projectile at 300 keV ) PI’O] eCti I e a.t 3 OO kev
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> Stopping at 10 g/cc (mass density) and 2 eV (temperature) I
> Force vs. projectile distance: Similar across velocities
> Microscopic distribution of forces: More data




Application 2: X-Ray Thompson Scattering

y A Concise Introduction

Measure inelastically
scattered x-rays

W= Ww; — Wsg
q = ¢q; — (s
qs = 2q; sin(6/2)

Hard x-rays

Sample of WDM
(opaque to optical probes)

> X-ray Thompson scattering probes density, ionization state, structure,
temperature, etc.

X-ray Thomson scattering in high energy density plasmas

Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 1625 —~ Published 1 December 2009

d’o qs

o Cross section is proportional to dynamic structure factor
Prop Y dQdw i

=0T — (Qa w)
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Application 2: X-Ray Thompson Scattering
Supporting diagnostics of LCLS with TDDFT

10 24 degrees
— Sperling, et al., (2015)
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Free-Electron X-Ray Laser Measurements of Collisional-Damped
Plasmons in Isochorically Heated Warm Dense Matter

P. Sperling, E. J. Gamboa, H. J. Lee, H.K. Chung, E. Galtier, Y. Omarbakiyeva, H. Reinholz, G. Ropke, U. Zastrau, J.
Hastings, L. B. Fletcher, and S. H. Glenzer

Phys. Rev. Lett. 115, 115001 - Published 9 September 2015
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Warm Dense Matter Demonstrating Non-Drude Conductivity from
Observations of Nonlinear Plasmon Damping

B.B.L. Witte, L. B. Fletcher, E. Galtier, E. Gamboa, H. J. Lee, U. Zastrau, R. Redmer, S. H. Glenzer, and P. Sperling
Phys. Rev. Lett. 118, 225001 - Published 31 May 2017
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