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Interplay of Theory, Simulation, and Experiment in HED Physics
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Magneto-hydrodynamics
simulations support design

of HED experiments.

HED
experi ments

Magneto-
hydrodynamics
simulations

HED experiments and
diagnostics provide data
to benchmark theory.

AMO/Electronic
structure
theory

Atom/Electronic structure
theory provides data on

microscopic scale (electronic
transport properties) as

input to magneto-
hydrodynamics simulations.
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Utility of TDDFT for HED physics

Electronic Structure and Condensed Matter Theory

DFT

Equation of
state Shock physics

TDDFT

Stopping
Power

Measurement of Charged-Particle Stopping in Warm Dense
Plasma
A. a Zylstra, J A. Frente. P E Grabowski. C K. Li, G W Collins. P Fitzsimmons, S Glenzer. F Graziani,
S, B. Hansen. S. X. Hu. M Gatu Johnson, P. Keiter. H Reynolds. J. R Rygg. F. H. Seguin. and R. D.
Petrasso
Phys. Rev. Lett 114. 215002 - Published 27 May 2015

Free-Electron X-Ray Laser Measurements of Collisional-Damped
Plasmons in lsochorically Heated Warm Dense Matter
P. Sperling, E. J. Gamboa. H. J. Lee. H. K. Chung. E. Gather. Y. Omarbaloyeva. H. Reinholz, G. Ropke. U. Zastrau. J
Hastings. L. B. Fletcher. and S. H. Glenzer
Phys. Rev. Lett 115. 115001 - Publrshed 9 September 2015
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Coupled Electron-lon Many-Body Problem

Time-dependent Schrödinger equation for the many-particle (molecular) Hamiltonian.
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Time-dependent DFT and Ehrenfest MD

We reduce the complexity to a one-body problem 8-

(somewhat at the cost of accuracy).

Two coupled equations of motion
TD Kohn-Sham equations
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Implementation of TDDFT for HED

Sandia implementation of TDDFT-
Ehrenfest MD in VASP
Andrew D. Baczewski et al., PRL 116,
I 15004 (201 6)

Plane wave basis

Projector-augmented wave (PAW)
formalism

Crank-Nicolson time integration
(unitary)

Generalized minimal residual method

Scales well on DOE machines

Typically 100s of cores, a few hours

No "free" parameters

takes mass density
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Stopping Power

Importance of Non-Adiabatic Effects

Hydrogen moving through cold, bull( aluminum in a channeling trajectory
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Warm Dense Deuterium
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Warm Dense Deuterium
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10 Warm Dense Deuterium
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11 Warm Dense Deuterium
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The Chihara Decomposition

J. Phys. F: Met. Phys. 17 (1987) 295-304.

Difference in x-ray scattering between metallic and non-metallic
liquids due to conduction electrons
Junzo Chihara

Department of Phsics. Japan Atomic Energy Research Institute. Tokai. Ibaraki 319-11.

Japan

Starting point for most models of the dynamic structure factor
Partition electrons into bound and free and model each contribution

S(cl, w) = (q) m(q) 2 w) Zf See (cl, w) Sbf w)

In principle, this is fine.

In practice, there can be problems:
Distinction between bound and free electrons might break down forWDM

Inconsistent treatment of various terms

More parameters



X-Ray Thomson Scattering

Chihara-free Dynamic Structure Factor under HED Conditions

Probe system with x-ray

v(r, t) = vo eq.' f (t)

47r sin(8/2)
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Ao : probe wavelength (2Å)

Record density response
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X-Ray Thomson Scattering

Chihara-free Dynamic Structure Factor under HED Conditions

Probe system with x-ray
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X-Ray Thomson Scattering

Chihara-free Dynamic Structure Factor under HED Conditions

(a) 25Comparison ofTDDFT (solid lines) to
state-of-the-art models

Free electron feature
RPA dielectric function and Mermin
approximation (dashed)
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Electrical and Optical Conductivity under HED Conditions

Liquid Aluminum at High Temperature

State-of-the art conductivities from static approaches
(average-atom methods or DFT with Kubo-
Greenwood formula)

gic(W) = 3wc1 E [f (ci,k) — f (ci,k)]
z

X (0i,kV0j,k) 26(Ej,k Ei,k CA))

Going beyond static approaches with TDDFT
O No abuse of KS quantities
• Better scaling than in the energy domain

• Beyond linear response
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Conclusions and Outlook

17

First-principle TDDFT calculations provide microscopic data and
help constrain experiments and other state-of-the-art models.

Stopping power
Capability to improve databases of stopping curves for a wide range of warm dense
targets (mixtures of target materials, different types of projectiles, statistical data)

X-ray Thompson scattering / Conductivities
Capability to help with diagnostics and serve as input to magneto-hydrodynamics
simulations.

Future developments
Need for a self-consistent model for HED physics

O Need for improvements in computational efficiency and accuracy

O Computationally efficient stopping power with TDDFT on average-atom models

O Thermal conductivity from TDDFT

- More accurate inclusion of non-adiabatic effects from the exact factorization method

Non-equilibrium many-body perturbation theory
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What are HED and WDM conditions?
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Introduction

High energy density (HED) conditions

Creating HED conditions requires transferring an enormous amount of energy
to a target in a very short period of time.

Compression of energy in time and space in pulsed power facilities (Z
machine) enables exciting science (astrophysics, planetary science, inertial
confinement fusion).

Z Machine, Sandia National Laboratories.
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Time scales
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Density Functional Theory

ft=t+f/ee+f7
Electronic Hamiltonian

Hohenberg-Kohn functional

F [n] = min (ITO +17-eelkij)

E = mln {F[n] + dr n(r) v (r)

Kohn-Sham scheme

vs(r)} Oi(r) = Ei02(r)

n(r) = 0:(00i(r)

F [n] = T, [n] + U [n] + E [n]

6U [n] E „, [n]
v,(r) = v(r)

ån(r) 6n(r)
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Density Functional Theory (at finite temperature)

Electronic Hamiltonian

ii=i7+f7ee+f7

W N ,i) 01 N,2 1

Grand potential S2 = + µArs

Mermin generalization

FT [n] = min {T [11 + Ve,[11 — TS [1;]1
t—xn

= mrIn {FT [n] + f dr n(r) (v(r) — bi)}

Kohn-Sham scheme
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N
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Electronic Stopping in Warm Dense Targets

Stopping mechanisms

0 Nuclear stopping (lattice vibrations)

0 Electronic stopping (electronic excitations)

Large body of literature for cold targets

Empirical approximations (Rutherford,Thomson, Bohr, Bethe)

Parameter-free atomistic simulations

Electronic structure coupled to molecular dynamics

Cold stopping power (Echenique, Correa, Artacho, Schleife)

Target chamber, National Ignition Facility,
Lawrence Livermore National Laboratories.
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H/Be Stopping Simulation

Stopping power in cold Be
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H/Be Stopping Simulation: Electronic Stopping Force
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Microscopic Statistics of the Electronic Stopping Force
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H/Be Stopping Simulation: Electronic Stopping Work
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Cold and Warm Dense Beryllium
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Stopping in Warm Dense Deuterium:A Closer Look
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A Concise Introduction

Hard x-rays

Sample ofWDM
(opaque to optical probes)

Measure inelastically
scattered x-rays

w = wi — ws

q = qi — qs

qs = 2qi sin(0/2)

X-ray Thompson scattering probes density, ionization state, structure,
temperature, etc.

X-ray Thomson scattering in high energy density plasmas
Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 1625 - Published 1 December 2009

d2 o- qs
- Cross section is proportional to dynamic structure factor   = aT —S(q, w)

dC2dco qi
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Supporting diagnostics of LCLS with TDDFT

1 0
— Sperling, et al., (2015)

11=1 TDDFT, Te = 6 eV
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Free-Electron X-Ray Laser Measurements of Collisional-Damped
Plasmons in lsochorically Heated Warm Dense Matter
P. Sperling, E. J. Garnboa, H. J. Lee. H. K. Chung, E. Galtier, y. Omarbakiyesss, H. Reiriholz. G. Ropke. U. Zastrau. J.
Hastings, L. B. Fletcher. and S. H. Glenzer
Phys. Rev. Lett. 115, 115001— Published 9 September 2015
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