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odeling of FCEV WMIRnels

isk a

e Objective: Provide the necessary information to authorities in the Northeast Corridor
to determine if FCEVs should be permitted in tunnels

e Comprehensive Risk Analysis

— What could happen, what are the consequences if it does happen, what are the chances of
it happening

— Attempt to quantify the probabilities of each scenario
e Evaluation of the Consequences, if uncertain

— Modeling and analysis of a Thermally Activated Pressure Relief Device (TPRD) release
e Listen to concerns of Authorities Having Jurisdiction (AHJ)

— Investigate and address each concern
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Board, National Transportation Safety,(2007)
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e GREEN Scenarios A, B, C, F, B ooEzo/ F G H | J

and H, where there is no C 0.04%
. 0.35%

additional consequence
resulting from the FCEV,
clearly dominate the
probability of scenarios

e YELLOW Scenario G postulates
an FCEV crash were the TPRD

activates due to temperatures
from an external fire

e RED Scenarios E and J involve
delayed ignition but are very
low probability

Probability of each branch line scenario, given
an accident in a tunnel
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Modellng Multiple Tunnels |

e TPRD release scenario (G)

— Gasoline from other vehicle ignites, external fire engulfs FCEV, activates the TPRD
— H, immediately ignited and a jet fire results aimed toward tunnel ceiling

— A 125-liter, 70 MPA tank with a TPRD orifice of 2.25 mm is analyzed with a
blowdown of approximately 300 sec

e Analyzed CANA, Sumner & Ted Williams Tunnels to quantify:
— Distortion of steel frames supporting concrete panels

eves:

— Impact on capacity of epoxy anchors under anticipated heat :

¥ _ Board, National Transportation Safety,(2007)
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CANA Tunnel H, Jet Flame CFD Model -
Gas Temperature Without Ventilation

Time = 0.00 sec
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CANA Tunnel CFD, No Ventilation
Time = 0.37 sec Time = 0.46 sec
Time = 1.02 sec Time = 2.05 sec e
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""CANA Tunnel H, Jet Flame CFD Model -

Gas Temperature With Ventilation
Time = 0.00 sec

/\

« Ventilation speed
=10 mph
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CANA Tunnel CFD with Ventilation

= Flame does not reach ceiling, but hot gas mixture does.

004 2 A ; 075

Tgas ( C)

4 1062 1581 2100

= The separation of the jet at the ceiling interface is caused by a counter-rotating
vortex pair generated by the jet in crossflow

t=1.02s t=112s t=2s t=3.05s t=4.08s t=588s

Tgas (°C)
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CANA Tunnel CFD with Ventilation

= Flame does not reach ceiling, but hot gas mixture does.

= The separation of the jet at the ceiling interface is caused by a counter-rotating
vortex pair generated by the jet in crossflow

Time = 300.00 sec
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esults

Potential for explosive spalling:

— Modeling showed that conditions are present that may result in localized spalling
in the area where the hydrogen jet flame impinges the ceiling

— Steel deflection is minimal
— Note that the hydrogen heat release rate was over-predicted, so the temperature

observed should be lower
Effect of heat on the epoxy:

— Maximum temperature at epoxy/bolt location is ambient, well below failure
point of 90 °C, even under the worst case, conservative condition

Effect of heat on the steel support structure:

— Maximum temperature of steel hangers exposed directly to the hydrogen jet
flame is 706 °C after 5 minutes of impingement for the case with no ventilation

Analysis focused on short duration H, jet flame. Hydrocarbon
fuel/vehicle fire would be a longer duration and resulting heat was not
analyzed and may result in spalling concrete

— Only the hydrogen fire was analyzed because it posed a new hazard
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qemain ChaIIs' and

e Hydrogen Tunnel Safety
e Local AHJ permissions may not be granted, despite scientific analysis.

e Different jurisdictions grant differing permissions for FCEV, resulting in
complicated use allowances.

Proposed Future Work

e Support NE Tunnel Jurisdictions with analysis and characterizations for
decision support
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\

Thank you!

Gabriela Bran Anleu
Sandia National Laboratories
gabrana@sandia.gov

Research supported by DOE Fuel Cell Technologies Office
(DOE EERE/FCTO)
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Technical Back-Up Slides
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— A
- Velocity of H, Tank Blowdown

Valve orifice diameter was adjusted due to
mesh constraint

Protective layer Carbon composite shell
(impact resistance) (mechanical strength)

Gas outlet solenoid

— Actual valve diameter 2.25 mm — CFD orifice
diameter 5.25 cm

High density polymer liner
(gas diffusion barrier)

In-tank

— Same mass flow rate by adjusting velocity ki
under-predicts flame impingement duration on

t h e ce | | | N g Pressure relief device
https://cafcp.org/emergency-responders

Foam dome
(impact resistance)

In-tank gas temperature sensor

Modeled: 700 m/s over 5 minutes

= Will over-predict amount of mass released, but captures momentum and flame length
= Heat release rate is also over-predicted,

HRR = 1i,AH,
1000 20

N
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“Important Conservative Assumptions

Only one fuel can be burned atatimein

the simulations ze0 1 | Hydrogen Vehicl

— Simulations include only hydrogen jet flame E 40 T || ——Gasoline Passenger Veticle

20
— Heat Release Rate (HRR) from hydrogenis * o | e |
constant for the 5 minutes of the H, release 0 20 40 60 30
Constant choked velocity was used for Time (minutes)
1000

the release of hydrogen (no blowdown 2 800 N__
over time) <. 600

— Blowdown would last 5 minutes § 200 |  —D=525cm

— Ensured worst case flame heat release rate 0 ' ' ' '

and duration of impingement
. Time (min)
The flame was located directly under the

shortest steel support to represent the
worst case

Stainless steel 316

Concrete
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Initiating Event

h ! L. 4
~Accomplishments: Risk Analysis of FCEV in Tunnels

hydrogen fuel cell vehicle

e The event tree illustrates the chronological sequence
of events involving the successes and/or failures of

the system components

16

Tunnel accidents per| Isthe accident Diges the.accident Is H2 released from | Is H2 released from L. Does the H2 ignite Br'fmch BignEh .
million vehicle miles minor? cause:a fire post- the system? the TPRD? Doesthe H ignite? immediately? Llne. . Frequency |Scenario
crash? Probability| (per mvm)
0.9406 [ os1e-01] 292601 NANN
Minor
0.9000 [ 3.656-02] 113602 NN
0.3100 0.6834 0.8530 [ 3.466-03] 107603 G
No lgnition
0.1000 0.6667 [ 398e04] 123604 D |
Immediate
0.1470
Ignition 0.3333 [ 1.996-04] 6.176-05
0.0594 Delayed
Severe [ 8.46E-03] 2.62E-03
[ s846e-03] 2626-03] 6 |
0.8530 [ 1606-03] 497604
No Ignition
0.6667 [ 1.84e-04] 571605 1 |
Immediate
0.1470
. . . Ignition 0.3333 9.216-05] _2.86E-05| NI
e Created to analyze the risk of an accident with a ) Delayed | l

Risk analysis used to identify
possible scenarios and focus
CFD modeling efforts on
scenarios with highest risk
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Accomplishments: Heat Transfer Model Predicts
Temperatures Throughout Concrete Panels

CANA Tunnel
Maximum concrete Temperature vs. Time 500 Temperature across Concrete
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It is much less likely to have explosive spalling when
17 tunnel ventilation is operating
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Accomplishments: Effects on Structural Elements
Predicted

TW Tunnel
Maximum concrete Temperature vs. Time Temperature across 316 SS hanger
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The epoxy will not reach the failure temperature of 90 °C




