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Hierarchical pores aid multiphase transport

• Technologies like batteries, fuel cells, and catalytic converters
require transport between a fluid and stationary phase.

• High surface area between phases 4 small pores

• Rapid fluid transport -) large pores

• 3D printing offers deterministic, optimal pore structures

http://www2.jpl.nasa.gov/filesllimages/hi-res/p48600ac.tif
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Case 1: Porous electrodes for energy storage

• Battery electrodes

• Electrochemical capacitors

• To charge quickly, we need device geometries that
provide high interfacial surface area, and short path
lengths in low-conductivity regions.

separator

porous
electrode

Robinson, DB. (2010). Optimization of power and energy densities in supercapacitors. Journal of Power Sources 195:3748.
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Nanoporous Palladium Electrodes
• Films prepared by electrodeposition with block copolymer

pore template

• Disordered 10-20nm pores
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Electrodeposition of Nanoporous Palladium

PdCI42- + 2e- 4— Pd + C14-

Na

Na+

Pluronic F127 micelle former

E0101 P056 E0101
where E02P02E02 is :

Extends Wang et al., Chem Mater. 24 1591 (2012)

electrolyte solution:
200p1 0.25M Na2PdCI4
200p1 1M HCI
200p1 10% F127
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Double junction
Ag/AgCI
reference
electrode

Spiraled Pd wire
counter
electrode

Electrolyte
solution

300nm Pd on Si wafer
lOnm Ti adhesion layer
Surface area: 0.4cm2

Apply -1 to -2.5 mA/cm2 for 1-24 hours
Working electrode is about 0.2 V
Counterelectrode is about 0.8 V
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Electrochemical admittance
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• Measures reversible electrostatic adsorption of aqueous ions
to surface without chemical reactions

• Provides a measure of surface area, charging rate
1
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Electrochemical hydriding rates
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• Apply negative current for fixed time: Pd + H+ + e- —> PdH

• Then step to positive potential, observe reverse reaction

Porous
lh plate

20

Porous
24h plate

40 60

Time, s

Discharge after
180 mC hydride charge

Nonporous 400 nm

80 100

• Porous films dehydride more quickly
• 1 hour has faster dehydriding due to

lower pore resistance
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Case 2: Isotope exchange gas chromatography

• Second-order kinetics: sharp, steady-state composition boundary

• H2 + PdD0.6 -> D2 + PdH0.6

• Elute with H2 (protium), measure D2 eluate with mass spectrometer

• HD peak width indicates broadening
mechanisms
• Reaction kinetics

• Gas-phase axial, radial diffusion

• Solid-phase diffusion (no bulk reaction)

• 2 mm diameter, 20 mm long column

• 190 mg Pd powder, 50 psi drop
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3D-printed porous structure
• Space diagonal-oriented cube-edge lattice

• Simple flow paths, all at same angle vs. flow direction

• Near their resolution limit, 3D printers are best at making simple lattices

• 5 to 50% solid fraction

• Tile hexagonal prism unit cell, crop to part shape

M. Salloum, D. B. Robinson. AlChE J. 64 1874-1884
10.1002/aic.16108
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Autodesk Ember 3D printer

• Projects blue-light images into photopolymer resin in tray
through silicone-coated window

• First layer glues itself to metal base plate on z stage

• Stage moves up, tray sloshes resin, repeat 100-1000x

• Image is 912x1140 array of 50 p.m pixels

• Resin contains photoinitiator, absorber, mono- and oligo-
acrylate monomers

• $7k instrument, $100/L resin

• Mostly open source polymers, software, and hardware

• Window adhesion limits lattice geometries

Image slice examples
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Autodesk Ember
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Ember lattice
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• This Ember part has 150 [im pores. The part is grown at an

angle so that the cube-edge Iattice is aligned with the growth

direction, allowing full use of the printer's resolution.

Pyramid base is 7.5 mm
Cylinders are 2 mm diameter, 20 mm Iong
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Metal coating of Ember part
• We have grown conformal 1 p.m scale Pd layers on Ember

parts by electroless deposition. The layers can be thickened
by subsequent electroless deposition or electrodeposition.

SEI 5.0kV X500 WD 6.0mm 1 Ow
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Electroless Pd layer

• Works well on polycarbonate filaments (extrusion 3D
printers), acrylate photopolymers

• Create seed particles by sequential dips in Na2PdC14, NaBH4

• 2-24 h in (NH3)4PdC14 — N2H4 bath with excess NH3, NH4CI

• Use isopropanol-water mix to aid wetting in seed dips

• Use flow or external agitation to aid mass transport in bath

Polycarbonate lattice
with and without
electroless layer

Christopher G. Jones et al.
J. Electrochem. Soc. 2017, 164 (13) D867-D874
10.1149/2.1341713jes
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Ember x-ray tomography

• X-ray tomography has confirmed that the electroless
deposition method evenly coats the part interior.
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Ember part as capacitor

• Part shows high
capacitance with
internal resistance
comparable to
external resistance

• 10 p.m layer thickness
estimated from this

• 150 [..tm pores
increase surface
area 5x vs. nonporous
cylinder
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porous layer
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3D-printed column performance

• Electroless layer + H2 —0

porous electrodeposited layer

• Peak width approximately equals elution time

• Some nearly pure D2 elutes

• Should improve with more Pd, lower polymer volume fraction

• Pressure drop as noted

12
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Hierarchical lattices
• Can finer porosity be 3D printed?

• Example: finer lattice is also a cube-edge lattice oriented along the cube
space diagonal

• Finer lattice increases the surface area of the solid phase, allowing for
increased fluid-solid contact.

• Metal layer can be electroless only, without nanoporous layer

• Requires high-resolution 3D printer
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Nanoscribe 3D printer

• Rastered laser for two-photon polymerization

• Sub-p.m resolution

• Requires 1 day to print 1 mm solid cube

• Sparse lattices can be much faster

• $500k instrument, proprietary polymers and software

User friendly Microscope Optics cabinet with
software package docking station all necessary optics

] Turn-key
NIR fiber laser

Scanning unit based on
pivoted galvo mirrors 

Positioning system
(motorized stage +
piezo stage)

nanoscribe.de

Microscope with
autofocus system

High-sensitivity
microscope camera

Self-leveling vibration
isolation frame with
optical breadboard

Electronics rack with
controllers and PC



Sparse Nanoscribe sublattice

• We have designed sparse sublattices that can print as two
2 mm diameter, 2.8 mm tall cylinders overnight (9 mm3).

• Left image is a polymer structure in an optical microscope.
Other images are electroless Pd-coated parts in the electron
microscope.
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133 pm flow channels
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Nanoscribe movie

• Rastered laser solidifies polymer

• p.m-scale overhangs are accommodated
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Nanoscribe electrochemistry
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• A Nanoscribe part shows high capacitance when coated with nanoporous
layer, and resistance that is mostly external. It stores more hydrogen and
releases it more quickly with the nanoporous layer when charged at
constant current near about -0.25 V for 180 s.
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Nanoscribe chromatography

• 20.5 mg Pd on 6 stacked parts

• More pure D2 elutes than for analogous Ember part

• HD peak may be limited by detector rise time
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Conclusions

• Projection stereolithography and two-photon lithography can efficiently
print macroscopic lattice parts with features on the 1-100 lim scale.

• Polymer parts can be uniformly metallized by electroless deposition.

• Thick nanoporous layers can be deposited within polymer lattices.

• Thick hierarchically porous electrodes show higher power density than
thick planar electrodes.

• Sharp reaction boundaries can be obtained in exchange chromatography
columns.
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Nanoscribe optical images

With electroless layer With nanoporous layer
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Ember x-ray tomography

• X-ray tomography has confirmed that the electroless
deposition method evenly coats the part interior.
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Software used

• Lattices and parts to STL: OpenSCAD*

• Voxel lattices, STL-voxel interconversion: GNU Octave*

• Routine STL to voxels: Autodesk Print Studio

• STL to toolpaths: Nanoscribe DeScribe

• STL checks: MeshLab*

• Modeling: COMSOL and Matlab

• STL imaging: Cravesoft STL viewer*

• PLY/OFF overhang removal: GNU Octave*

*open source
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