
Functionalization of Metal Surfaces
using Hydride Intermediates

D. B. Robinson, Christopher G. Jones, Aidan W. Higginbotham, Roopjote K. Atwal, Ryan

K. Nishimoto, Joshua D. Sugar, Maher Salloum, Farid El Gabaly (Sandia)

D. M. Benson, J. L. Stickney (U. of Georgia)

Sita Gurung, Patrick J. Cappillino (U. Massachusetts, Dartmouth)

AiMES 2018 ECS-SMEQJoint Meeting, Oct 2018

U.S. DEPARTMENT OF 111 M AIL"W,5

ENERGY
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525. Work at U. of Massachusetts was sponsored by
the Army Research Laboratory under grant number W911NF-16-1-0438. SAND2018

SAND2018-10697C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Outline

■ Goal: improve hydrogen reaction kinetics at surfaces

■ Strategy: Use H surface reactivity to modify composition

■ Atomic-layer electroless deposition

Pd powder substrates

Pd film substrates

Pt powder substrates

■ Strategy: Use H surface reactivity to modify surface area

■ Growth of nanoporous Pd on Pd by bulk hydriding

■ Solution-phase path to surface and bulk hydriding
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Surface modification should improve kinetics
of hydriding and dehydriding Pd

H2 (g) Pd° 4 Pd1-1, (X — 0.6) 0.0

Surface Pd-H is very stable
High surface site occupancy
Large activation barrier
Near-surface alloys destabilize surface hydrides
May then improve absorption kinetics
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Atomic-Layer Electroless Deposition (ALED)
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Scalable, room temperature, works with insulating support,
applies to "rough" surfaces with high surface area

Patrick J. Cappillino et al., Langmuir 30 (2014) 4820 10.1021/Ia500477s
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Absorption of H2 gas by Pd

100 nm
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P. J. Cappillino et al.,
J. Mater. Chem. A 2013, 1, 602
10.1039/C2TA00190J
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Simple Apparatus for ALED

• Pd powder suspended in electrolyte

• Reagent gas (1% H2/N2)/inert gas
source

• Metal salt solution added by syringe

• Electrodes to measure progress of
reaction

Pd wire WE

Headspace

Ag/AgCI RE Pt wire CE

Stirbar

Vent
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Pd powder suspended
0.1 M H2SO4
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Monitor open circuit potential to follow reaction
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Cyclic voltammetry of Pd test wire before and after
deposition of adlayer of Rh (left) and Pt (right)
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CV shows that adlayer inhibits surface Pd/Pd0 redox couple and suggests
improved hydride/dehydride kinetics.

"Dose Unit" is approximately one metal ion introduced per surface metal atom.
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No change to particle morphology after two cycles of
ALED of Rh on Pd

Pd powder before deposition Pd powder after 2 cycles of ALED
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More cycles, more metal deposited (by X-ray
Photoelectron Spectroscopy)
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STEM-EDS demonstrates conformal coating
on Pd@Rh, 2 cycles

Atomic fraction Rh
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STEM-EDS demonstrates conformal coating on
Pd@Rh, 8 cycles as well, some thickness variation
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STEM-EDS demonstrates conformal coating on
Pd@Pt, 1 cycle

HAADF MAG: 28.5kx HV: 200kV l
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Direct measurement of hydrogen desorption on powders

top-view

Powder, covered with
Celgard membrane

reference
electrode

L counter4. 
electrode

•

Au wafer,
working
electrode ALS-Japan

Plate material
evaluating cell
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Hydrogen desorption from powders
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• Powders charged with H2 by applying 1.5 mA for 60s

• Poised at 0.27 V vs. Ag/AgCI to desorb hydrogen (to)

• More adlayer metal yields faster dehydriding in this

dose range

• Pt adlayer yields faster dehydriding kinetics than Rh
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ALED on thin films

Schematic of Ef-ALD System
IArr

PU

❑

SEQUENCE
Version 4

Computer

Reagents:
0.1 mM RhCI3 10mM HCI 100mM H2SO4
0.1 mM PdCl2 50mM HCI
2 mM CuSO4 in 100 mM H2SO4
0.1 M H2504 blank

Grow Pd on Au by E-ALD*
Similar amounts bulk, surface hydride
Rh suppresses surface H peak (-50 mV),
Improves hydrogen desorption kinetics

*Sheridan et al., Langmuir 2013, 29, 1592 10.1021/1a303816z V
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Pd on Pt powder
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BET surface area of Pt powder = 5.2 Wig

About 0.4 dose units per cycle
- Works much like Pt on Pd

Oxide
reduction

Pd on Pt powder - 3 cycle

Hydride
formation

Pd on Pt powder -1 cycle



Pt surface hydride stability
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Pd on Pt powder XPS
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Pd on Pt - 3 cycles
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ALED of Cu onto Pd powder
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Iterative Electroless Nanoporous Pd

• Stepwise growth of nanoporous Pd with dilute micelle former

• Place Pd film or powder in vented fritted tube

• Flow H2 (or dilute H2)

• Pd + H2 -> PdH0.6

• Purge headspace with N2

• Add aqueous Pd2+, Pluronic F127, dilute HCI

• PdH06+ Na2PdCI4 + F127 -> porous Pd + HCI

• Drain, repeat as desired, rinse

Pluronic F127 micelle former
E0101 P056 E0101
where E02P02E02 is :

Ho
./-***,,,,,,,,°\,./..\0/-"--,, ---......,/-',... .---",..,..„..., -...,...„----,....

1 cycle

1111111.
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3 cycles

Sandia
National
LaboratoriesFilm thickness vs. cycle number

Film ideally grows exponentially

- (d 01 0) x 1.3n
do = initial film thickness
0 = porosity
n = number of cycles

1 cycle



Cyclic voltammetry of porous Pd film
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300 nm thick Pd film sample after 1 growth cycle in 2 M H2SO4
Surface redox cycles help clean Pd surface, including within pores
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Admittance of porous film
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1 2 3

Number of Cycles

Admittance at 0.2 V vs Ag/AgCI, 10 mV zero to peak, 2 M H2SO4.
Modeled as RC transmission line with external resistance.
Porous layer has highest capacitance, increasing with number of cycles.
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H2 desorption kinetics
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Samples charged with H 2 at given current for 180 s in 2M H2SO4
Discharged at 50 mV vs. Ag/AgCI

Porous film discharges more quickly and efficiently.
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Pd hydride formation without H2
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Formic acid/K formate mixtures tunably form surface, bulk hydride vs. pH,
concentration. (pKa is 3.77)

Straight gray line is expected open-circuit potential for a Pd hydride electrode.

L.D. Burke, F.A. Lewis, C. Kemball. "The Formation of Palladium Hydride by Reaction of
Formic Acid at Palladium Electrodes." J. Catalysis 1966, 5 (3) 539-542
10.1016/S0021-9517(66)80074-X
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Summary

• Hydrogen chemistry provides versatile methods
to modify the composition and area of noble
metal surfaces.

• STEM-EDS and XPS show conformal nm-scale
adlayers can be formed from surface hydrides

• SEM and STEM show pm-scale porous layers
can be formed from bulk hydrides

• Products show improved hydrogen adsorption
and desorption kinetics
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