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Outline ()}

= Goal: improve hydrogen reaction kinetics at surfaces
= Strategy: Use H surface reactivity to modify composition

= Atomic-layer electroless deposition
= Pd powder substrates
= Pd film substrates
= Pt powder substrates

= Strategy: Use H surface reactivity to modify surface area
= Growth of nanoporous Pd on Pd by bulk hydriding

= Solution-phase path to surface and bulk hydriding




Surface modification should improve kinetics ) i,
of hydriding and dehydriding Pd
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Atomic-Layer Electroless Deposition (ALED)

H,
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Scalable, room temperature, works with insulating support,
applies to “rough” surfaces with high surface area

Patrick J. Cappillino et al., Langmuir 30 (2014) 4820 10.1021/1a500477s




Absorption of H, gas by Pd
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Simple Apparatus for ALED

» Pd powder suspended in electrolyte

+ Reagent gas (1% H,/N,)/inert gas
source

» Metal salt solution added by syringe

» Electrodes to measure progress of
reaction

Ag/AgCIRE Pt wire CE

Pd wire WE

. -/ Pd powder suspended
0.1 M H,SO,




Monitor open circuit potential to follow reaction
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Cyclic voltammetry of Pd test wire before and after
deposition of adlayer of Rh (left) and Pt (right)
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CV shows that adlayer inhibits surface Pd/PdO redox couple and suggests
improved hydride/dehydride kinetics.

“Dose Unit” is approximately one metal ion introduced per surface metal atom.




No change to particle morphology after two cycles of T i
ALED of Rh on Pd

Pd powder before deposition Pd powder after 2 cycles of ALED




More cycles, more metal deposited (by X-ray )
Photoelectron Spectroscopy)
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STEM-EDS demonstrates conformal coating ()}
on Pd@RNh, 2 cycles

Atomic fraction Rh

Atomic 1871 40 nm
fraption R HAADE. MAG: 450000  HV: 200.0 KV W10t

Atomic
i fraction Rh

Coating is present in narrow regions




STEM-EDS demonstrates conformal coating on
Pd@Rh, 8 cycles as well, some thickness variation

Atomic
fraction
Rh



STEM-EDS demonstrates conformal coating on et
Pd@Pt, 1 cycle
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Direct measurement of hydrogen desorption on powders
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Hydrogen desorption from powders i Netora
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ALED on thin films

Schematic of E-ALD System
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Reagents: Rh grown on Pd byiv electroless H, exchange

0.1 mM RhCl; 10mM HCI 100mM H,SO,
0.1 mM PdCl, 50mM HCI

2 mM CuSO, in 100 mM H,SO,

0.1 M H,SO, blank

Grow Pd on Au by E-ALD*

Similar amounts bulk, surface hydride
Rh suppresses surface H peak (-50 mV),
Improves hydrogen desorption kinetics

*Sheridan et al., Langmuir 2013, 29, 1592 10.1021/1a303816z Ppotential (mv vs Ag/Agcl)

—Pd 5x SLRR on Au

—Rh 1x by H2 on Pd5x
——Rh 2% by H2 on Pd5x
—Rh 3x by H2 on Pd5x



Pd on Pt powder ) e,
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Pt surface hydride stability )=,
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Pd on Pt powder XPS @&
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ALED of Cu onto Pd powder ) S,

Cu on Pd - No Hydride formation after 2 cycle
Trial 1

Trial 2
3 m?/g Pd powder

1. Oxide reduction

Potential (V)

3. Galvanic replacement 6. No hydride formation
of Pd-H by Cu ’

. Galvanic replacement
of Pd-H by Cu

2. Formation of Pd-H 4. Hydride formation for 2" cycle
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lterative Electroless Nanoporous Pd ) jge,

= Stepwise growth of nanoporous Pd with dilute micelle former
= Place Pd film or powder in vented fritted tube
= Flow H, (or dilute H,)
= Pd+H,->PdH,,
" Purge headspace with N,
= Add aqueous Pd?*, Pluronic F127, dilute HCI
= PdH,, + Na,PdCl, + F127 -> porous Pd + HCl
= Drain, repeat as desired, rinse

1 cycle

Pluronic F127 micelle former
EO,91 POss EO4y;
where EO,PO,EOQ, is :

HO/\/°\/\°J\/°W/\O/\/°\/\OH




Film thickness vs. cycle number

3 cycl
Film ideally grows exponentially CyCeS
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d, = initial film thickness
@ = porosity

n = number of cycles




Cyclic voltammetry of porous Pd film
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300 nm thick Pd film sample after 1 growth cycle in 2 M H,SO,
Surface redox cycles help clean Pd surface, including within pores




Admittance of porous film ) =
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Admittance at 0.2 V vs Ag/AgCl, 10 mV zero to peak, 2 M H,SO,.
Modeled as RC transmission line with external resistance.
Porous layer has highest capacitance, increasing with number of cycles.




Charge, mC

H, desorption kinetics
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Discharged at 50 mV vs. Ag/AgCl

Porous film discharges more quickly and efficiently.




Pd hydride formation without H, ) e
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Open-circuit potential, V vs.
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Formic acid/K formate mixtures tunably form surface, bulk hydride vs. pH,
concentration. (pKa is 3.77)

Straight gray line is expected open-circuit potential for a Pd hydride electrode.

L.D. Burke, F.A. Lewis, C. Kemball. “The Formation of Palladium Hydride by Reaction of
Formic Acid at Palladium Electrodes.” J. Catalysis 1966, 5 (3) 539-542
10.1016/S0021-9517(66)80074-X



Summary

* Hydrogen chemistry provides versatile methods
to modify the composition and area of noble
metal surfaces.

*« STEM-EDS and XPS show conformal nm-scale
adlayers can be formed from surface hydrides

* SEM and STEM show um-scale porous layers
can be formed from bulk hydrides

* Products show improved hydrogen adsorption
and desorption kinetics
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