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2 I Background: Mechanical Properties of AM Metals

• Explored previously with high-throughput
techniques on SLS AM steels (17-4)

• Materials show high variability

• Makes design/qualification of AM parts
difficult — e.g. when will they fail?
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3 Background: Porosity Effects

Failure at 2% strain

• Material failure appears to be
associated with porosity

• On a basic level, "more" porosity
seems to be correlated with
earlier fracture

• It may be possible to predict
behavior for or qualify parts
based on porosity

Failure at 12% strain

Salzbrenner, Bradley C., et al. Journal of Materials Processing Technology 2017



4 Previous Work: Micro CT Coupled with High Throughput Testing

Top V-

Side
1400

What were the conclusions of this work? So far, no clear trends
between global void parameters and mechanical properties
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But are global void parameters the right thing to consider? Wha
specific parameters are relevant?
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Pre-test micro CT and Tensile Testing performed on 108 tensile dogbones (SS 17-4)



5 This Work: Couple in-situ Micro CT with Tensile Test

• Test performed on AM 316L sample
to fracture with lx0.75x5 mm gage
section with Deben in-situ tester

• Micro CT scans performed during
test at 160kV, no filter, 3 pm voxel
size

• Custom MATLAB script used for
segmentation and void
characterization

deben.co.uk Solid Material
External Region Void



6 Tensile Behavior
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• Interrupted tensile test
performed with a total of 10
micro CT scans

• Scans capture region where
necking and ultimate fracture
occu rred

• Focus on three scans from
different tensile regimes:

Elastic Regime
• Plastic Regime
• Necking/Near Fracture

Regime
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I7 Void Network Definition - I

Lfl

o

w

it 1111111
Void correlation and Iinear interpolation utilized to find
normalized void position relative to initial state

Brighter image regimes correspond to higher void density
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8 I Void Network Definition - 2
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lo Void-based Deformation Mechanisms

1) Void Growth

\

Note for void network evolution images, brighter
image corresponds to higher void density

4



11 Relevant Void Parameters

What parameters might influence local
deformation behavior?

• Void Size

• Distance to neighbor
• Greater influence from large

neighbors

• Void location

• This leaves one void network which
satisfies the following conditions:
• Large void size
• Close to large neighbors
• Close to free surface
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12 1 Critical Void Network # I :

• Voids grow and coalesce in plastic regime

• Before fracture, voids absorb into free surface

• Largest growth in plastic regime observed for this void
network

• So does that mean it dictates fracture?

4
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13 Critical Void Network #2:

• "h 

.1
• j

•

r

►

,

4

•

, ,..

•  or: , d ...„. 1 • 41.,.  .
..-. d g

AO' 1 _

- Ar • ii: Or .4: - '-‘ 111.- . .. - ..', - 
liVj ,_ .. _,T,0, -.4 .2.►

.' - •,,p "4...- IC- : - j'••:.: - -4
i 4. - I : . .; ' . 4, ..7 ' ". .' . It

- - • .• Ng - 4. • , 1 ' -
- -..... • : .- r — ''.11.,. , ,
P ' --0. . :i„,

- g 
`..pr

Ipt

12

0
nfher Void Networks

0 500 1000 1500 2000
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• What is critical about these voids that
cause the higher void emergence/growth
to occur for this void network?



14 1 Influence ofVoid Properties: Long Range Connectivity
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1

• Using same metrics used to find Critical Void
Network 1, there are no clear explanations as
to why void emergence and growth is most

0 25 dominant at these voids

• What about void connectivity (relationship to
0.2 many voids)?
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Void I

m=3

LRC1,72

m=1

• Critical Void Network 2 shows relatively high
LRC (indicating these voids are close to many
large voids)



1 5 Summary: Sample Deformation
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• Initial deformation localization highest
for Critical Void Network 1 with the
following features:
• Contains several large voids
• These voids are close to other large

voids
• These voids are close to the free

surface

• Highest void growth/emergence and
necking observed in Critical Void
Network 2
• Deformation localization from

Critical Void Network 1
• Higher connectivity to other voids

for this void network

1



16 Conclusions

• Localized (not global) void parameters appear to dictate the deformation
behavior

• In plastic deformation, parameters including void size, neighbor relationship,
and void location seem to contribute the most to deformation

• Necking and ultimate material fracture appear to depend on a combination of
deformation localization under plasticity and void network connectivity in high
deformation regimes



I17 Future Work

• Return to high throughput data: can criterion identified in this work better
predict properties of AM metals?
• There are other systems where treating the parameters in a similar fashion

may be beneficial, e.g. Process Study:
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• Further analyze this data: how does the evolution of all void networks
correspond to the void parameters?


