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31 Kinetic Plasma Simulations in Aleph

Sandia owned- PIC-DSMC ES code for kinetic simulation
of low temperature and non-equilibrium plasmas

Some features:
- Collisional Vlasov-Poisson Solver

- Massive parallelization for running on large
supercomputers

- Unstructured mesh

ALEPH

- 2B element problems ran, 10-100B possible
Advanced Plasma Transport & Kinetics

- Extensive diagnostic outputs

- Advanced BC’s, chemistry, ...

Test bed for PIC-DSMC ion-neutral scattering




“! Purpose:

Modeling interactions in PIC-DSMC codes
requires accurate cross sections

Scattering cross section data is scarce

 Drifting plasmas and ion beams
* Intermediate energy of 10eV to 100keV

Lack of data is typically dealt with by
extrapolation from low/high energy

Accurate elastic differential cross sections for
- Integral elastic (probability of collision)

- Momentum transfer

- Viscosity

Accurate knowledge of energy transfer can
elucidate elastic/inelastic interdependencies
and avoid the potentially double counting
interactioEns
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Intermediate distances
=> electron clouds partly screen
the Coulomb repulsion

Atoms very close
to each other =>
pure Coulomb repulsion
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able a physics based approach to calculate scattering cross

section for modeling of ion-neutral collisions in plasmas

*Krsti¢, P. S., & Schultz, D. R. Physical Review A, 60(3) 2118. |




5 ‘ Elastic Scattering

Orbit Equation

Analytic solutions for: Coulomb-like potentials
oo 7
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Rutherford scattering formula
. Great success!
d_ﬁ | Lilaem T - Light ion on heavy-target collisions
4d0 16megEy sirﬁ( g) - Bare Coulomb interaction

Screened Coulomb potentials relevant for medium-to-low energy collisions
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Something like Rutherford differential scattering formula would be ideal
- Low to medium energy interactions (10eV to 100keV)
- Screened Coulomb potentials




s I Universal Scattering Cross Section
From LSS*:
')

dﬁznazwdr f1/2:85i1’1(9),

- Rutherford-like at high energies
- Screened at medium to low energies
- Screening functions fitted

f(fl/z) :AIE/Z_M [l + (erl—m)q] 1/q

- Relationship to stopping power
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Fig. 1. Universal differential scattering cross section for elastic nuclear collisions, (2.9), based

on a Thomas-Fermi type potential, At high values of (/% it joins smoothly the Rutherford scat-
tering. The cross section corresponding to power law scattering (2.6), or (2.6), with s « 2 Is

SCREENING FUNCTION

®(r),

also shown.
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Which fit to use? ... Which one is sufficiently accurate?

*Linhard, Nielsen, & Scharff (1963), Linhard, Scharff & Schiott (1962)
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Use the ZBL potential

108

10%

Nuclear stopping data scaling
based on physical arguments

Stopping eV/(10'® atoms/cm?®)
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Stopping vs.
Ion Energy

Scaling Ion Stopping Powers
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Scaling Ion Stopping Powers
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ZBL is the best fit to:
- HF calculations of interatomic potentials

- Reduced nuclear stopping data

Stopping/Z,5/47,%6

versus V,/VpZ,?/3
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Sometimes called ‘average’ potential
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Validated: derived from experimental
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stopping data

ZBL potential is
- used in SRIM
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- Accurate (within 10%)
- Universal

Reduced MNuclear Stopping (5,
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'Single line for Reduced Nuclear Stopping
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Quadrature =2 Avoid

Orbit equation computationally & —ar — 2})/ e (r)] " dr,
expensive, details unknown ro
. . . T do %m& :
Plfferentlgl scattering o =21 f dfsin f—. Fof e
integral divergent 0 d{) srtr
cos O% _BRetn
ZBL suggested approaches "\2)~ Ry +Re

1. Magic Formula

2 f(t1/2)
2[2/3

2. Invert reduced nuclear stopping  f(x) = il xSp(x)]  do=rma

dx o ‘

Use analytical methods and reduced nuclear stopping function for elastic |
differential scattering cross section




»1 Implementation: Scattering Tables
5 1000F ) JC(T-]/I?

In terms of reduced quantities, E 100 573
calculation is agnostic of collision CRRL | =
pair details E o}
Enables the user to precompute g "I VI a =
tables before runtime! § w2} 177 =esin(3),

s 0.5 1.0 1.5 2.0 2.5 3.0
Take advantage of fast table look up ©-radians (COM)
and interpolation
- 12 operations 10° ' e ' '
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In practice, the integral elastic cross g 10% . 0 doe
section is truncated with a threshold g 100/ _
angle of 0.01 radians in the COM frame g ‘
THAN-then-trapezoidal Rule 107 .

02 01 1T 10 1o 1000 104|

User-friendly, one free parameter, accurate? Rkl Bacagy -~ =




o1 Results

» He* thru background He gas

o Differential Scattering: 600eV He+ on He
« Simis 1D3V N
° +1 I
“-V\ e 1ons .. 107 \ No Collision Threshold
» Fix density so that, domain is ;
1 mfp in length. 104} ‘
« Clear artifacts due to 5 1090
4, [
threshold 100! “,,.«-»‘""
 Poisson statistics: expect 1M 10
collisions " Due to multiple collisions
. ; i T, s w m s i
0.01 0.10 1 10 100

» Beer-Lambert: expect 63%

. Lab Angle - 6 (deg)
beam attenuation

Algorithm captures the stochastic aspect of interactions and the expected |
beam attenuation




11‘ Compare to Rutherford
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Good agreement for high energies
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12 I Compare to Rutherford
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Good agreement for high energies




13 I Differential scattering at low energies: good data from the 60’s
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ELASTIC DIFFERENTIAL

5 SECTIONS FOR )
o =o'+ it 0!

ELASTIC DIFFERENTIAL
SCATTERING CROSS SECTION
FOR He' 4 No = He' + Ne
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Fi16. 6. Elastic differential scattering cross sections for He* on F 1G. 8',Eh3nc dlﬁ,ercnh‘l scattering cross sections fm' He o’t
He at incident energies from 20 to 600 eV. Note the shifted scale; Ne at incident encrgics f'rom 10 to 600 eY' Note ﬂ“ slnfte'd scale;
the proper scale is identified at 10~ cm? by the intersection of a the proper scale is identified at 107 cm* by the intersection of a
horizontal line with each curve. horizontal line with each curve.

W. Aberth and D. C. Lorents. Physical Review, 144(1):109, 1966.



14 1 Compare to low energy scattering data

B o 3 wede " £ 2R [RDREN) He' + Ne -> He' + Ne (100ev) |
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| Digitized data |
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e Line through data
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% Calculation B 1o}
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Good agreement at low energies




15 1 Compare to scattering data below [00eV
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16 I Integral Elastic Scattering Cross Section

Vahedi, Surrendra
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Fig. 5. The ion-neutral cross sections in argon. Energy (eV)

Direct comparison of values: 3x10"-19 vs 1.2x10"-18 m”"2 for our calculation

However, choosing the same angular range of 6° and 174°, our calculation
yields 3.45x10"-19

Important to calculate collisions for which are defined in
the angular range of the integral cross section




"" Last but not least: i

Comparison to SRIM N T . SRIM(IE-S gcc)
. . i, + Aleph (1E-8 g/ce) |
= 1000 |
8 100+
- 600 eV He+ through He gas
10: -
- Scattering details are identical : - —
B T S T S 7
Lab Angle — 6 (deg)
- Implementation details show 10°
different artifacts ) . SRIM (2E-8 g/cc) |
o Tt . Aleph (2E-8 g,/cc}f-
+ A method to SRIM-like calculations 3 100} *
in a PIC-DSMC setting :
« Although not ideal for SRIM-like - .
calculations, enables a similar il | | g
capability in massively parallel 0.1 1 10 100

platforms Lab Angle — 6 (deg)
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Questions




