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3 Kinetic Plasma Simulations in Aleph

Sandia owned- PIC-DSMC ES code for kinetic simulation
of low temperature and non-equilibrium plasmas

Some features:

- Collisional Vlasov-Poisson Solver

- Massive parallelization for running on large
supercomputers

- Unstructured mesh

2B element problems ran, 10-100B possible

Extensive diagnostic outputs

Advanced BC's, chemistry, ...

Test bed for PIC-DSMC ion-neutral scattering

FILEPH
Adam:lid Marna Transport& Kir.



4  Purpose:
Modeling interactions in PIC-DSMC codes
requires accurate cross sections

Scattering cross section data is scarce

• Drifting plasmas and ion beams
• Intermediate energy of 10eV to 100keV

Lack of data is typically dealt with by
extrapolation from low/high energy

Accurate elastic differential cross sections for
- Integral elastic (probability of collision)
- Momentum transfer
- Viscosity

Nc NiGT pgi

Atoms very close
to each other =>

pure Coulomb repulsion

Intermediate distances
=> electron clouds partly screen

the Coulomb repulsion

o-e1= 2 IT dO sin 0
fl

do-

do-
Grvi= 2 7T I do sin30

Accurate knowledge of energy transfer can 7 dff

elucidate elastic/inelastic interdependencies 
crmt = 2 dO sin 0(1 — cos 0) 

and avoid the potentially double counting
interactions

tnable a physics based approach to calculate scattering cross
section for modeling of ion-neutral collisions in plasmas

Krsti6, P. S., Et Schultz, D. R. Physical Review A, 60(3) 2118.



5 Elastic Scattering

Orbit Equation

0 = ir — 2p f [r2 g(r)]-1 dr.
o

g(r) =
V (r) p2

E1. r2

Rutherford scattering formula

d (  Z1Z2e2  )2  1

167ceoE0 sin4(c

Analytic solutions for: Coulomb-like potentials

Hard Sphere Z1Z2e2

t

V (r)  -,
v (I. ) = 0 r > R PL.

r < R Z1Z2e2
(r) =

r

Great success!
- Light ion on heavy-target collisions
- Bare Coulomb interaction

Screened Coulomb potentials relevant for medium-to-low energy collisions

Z1Z2e2 r
V (r) = 43 —a 4:13 —) = Eciexp(—di;)

\a

Something like Rutherford differential scattering formula would be ideal
- Low to medium energy interactions (10eV to 100keV)
- Screened Coulomb potentials



6 I Universal Scattering Cross Section

From LSS*:

2 F012)
= 7ra' 2\1_2/3j dt

l /2 •
t — E s1n(-

2

- Rutherford-like at high energies

- Screened at medium to low energies

- Screening functions fitted

f(t1 /2) = At1/2-)" [1 + (2A.t1-mr] 1/q

- Relationship to stopping power

iE
SH(E)= 0 f(t1/2)01/2)
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Fig. 1. Universal differential scattering cross section for elastic nuclear collisions, (2.9). based
on n Thomus.Fertni type potential. At high values of Pi' It joins smoothly the Rutherford scat-
tering. The cross section corresponding tn power law scattering (2.6), or (2.6'), with s w 2 is

also shown.
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Which fit to use? ... Which one is sufficiently accurate?

*Linhard, Nielsen, Et Scharff (1963), Linhard, Scharff a Schiott (1962)



71 Use the ZBL potentia

Nuclear stopping data scaling
based on physical arguments

Scaling Ion Stopping Powers

lai Ise ice
Ion Ener

ZBL is the best fit to:

- HF calculations of interatomic potentials

- Reduced nuclear stopping data

Sometimes called 'average' potential

Validated: derived from experimental

stopping data

ZBL potential is
- used in SRIM
- Accurate (within 10%)
- Universal

rE
Scaling Ion Stopping Powers
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8 I Quadrature Avoid

Orbit equation computationally p I [r2g(r)]-1 dr.
expensive, details unknown o

Differential scattering
integral divergent

7 do-
(r i= 2 (10 Sill 

dn.

107

106

105
104

al
Zr: 
10
3

102

Geiger and Marsden's
data pants

Theoretical scattenng
of one point charge
otl another

10  
20° 40° 60° HO° Iiice 120. 140.

scattering angle

ZBL suggested approaches cos =
Co) B+RcH- A

Ro +RC

1. Magic Formula

2. Invert reduced nuclear stopping f(x) = [xS,1(x)] dig = ga2f (t1/2)dt
2t2/3

Use analytical methods and reduced nuclear stopping function for elastic
differential scattering cross section



91 Implementation: Scattering Tables
1000

In terms of reduced quantities,
calculation is agnostic of collision
pair details

Enables the user to precompute
tables before runtime!

1 o- 3

Take advantage of fast table look up
and interpolation
- 12 operations

In practice, the integral elastic cross
section is truncated with a threshold
angle of 0.01 radians in the COM frame

THAN-then-trapezoidal Rule

User-friendly, one free parameter, accurate?

0.5 1.0 1.5 2.0

0—radians (COM)

2.5 3.0

• • I

7' dc(e. e) 
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do
d —  

fo (10
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10 I Results

• He+ thru background He gas
• Sim is 1D3V
• 1M He+ ions i05
• Fix density so that, domain is

1 mfp in length. io4
,,,
4a' low• Clear artifacts due to z

threshold 
0c.)

100

• Poisson statistics: expect 1M 10
collisions

• Beer-Lambert: expect 63%
beam attenuation

Differential Scattering: 600eV He+ on He

Lab Angle - e (deg)

Algorithm captures the stochastic aspect of interactions and the expected
beam attenuation



11 Compare to Rutherford

Choose a heavy target
- He on Ne

Differential Scattering

10,2
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10
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Good agreement for high energies



12 Compare to Rutherford
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13 Differential scattering at low energies: good data from the 60's

trL
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FIG. 6. Elastic differential scattering cross sections for He+ on
He at incident energics from 20 to 600 eV. Note the shifted scale;
the proper scale is identified at 10-0 cin, by the intersection of a
horizontal line with each curve.
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FIG. 8. Elastic differential scattering cross sections for He+ on
Ne at incident energies frorn 10 to 600 eV. Note the shifted scale;
the proper scale is identified at 10-1e cmt by the intersection of a
horizontal line with each curve.

W. Aberth and D. C. Lorents. Physical Review, 144(1):109, 1966.



14  Compare to low energy scattering data

10-

10-

He' + He -> Het + He (600eV)

Digitized data

Line through data

Calculation

• ' "
5 10 15 20 25 30

Lab Scattering Angle— 0 (degrees)

35

10-21

He' F Ne (1 00eV)

0 10 20 30 40 50

Lab Scattering Angle— 0 (degrees)

Good agreement at low energies



15 Compare to scattering data below 100eV

10-1s

till 10-19

10-2,

10-21

•

•

- 0

- ■:

.

He' He ,-- He - a He ( 30eV)

Raw-digitized data

Adjusted data

Calculation

•

0 10 20 30 40

Lab Scattering Angle— 0 (degrees)

10-1-

50 0 10 20 30 40

Lab Scattering Angle- 61 (degrees)

Agreement to within 5x or better



16 Integral Elastic Scattering Cross Section

le

Vahedi, Surrendra

Charge Exchange

Scattering

•

1 04 10°

EnerAY

101

Fig. 5. The ion-newza1 closs sections in argon.

5x101

1. X 10-is

5. X 10-19

1. x

•

10 100 MOO

Energy (eV)

104

Direct comparison of values: 3x10^-19 vs 1.2x10^-18 m^2 for our calculation

However, choosing the same angular range of 6° and 174°, our calculation
yields 3.45x10^-19

Important to calculate collisions for which are defined in
the angular range of the integral cross section



17 1

Last but not least:
Comparison to SRIM

- 600 eV He+ through He gas

- Scattering details are identical

l0~

1000

100

10

1

- Implementation details show io5
different artifacts

• A method to SRIM-like calculations
in a PIC-DSMC setting

• Although not ideal for SRIM-like
calculations, enables a similar
capability in massively parallel
platforms

, 1000

7-) 100

10

0_1 1 10

Lab Angle — 9 (deg)

100

• SUM (2E-8 gicc)

; : • • ••:::;:t • Aleph (2E-8 g/cc)

0_1 1 10

Lab Angle — 6 (deg)

100



18 1

Questions


